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Abstract

When a p]aaning agent works in a complex: _'eal-world domain, i: is unable to plan for and

store all possible contingencies and problem situations ahead of time. The agent needs to

be able to _ back on _ ability to construct phns at run time under time const_ain'_s.

This thesis presents a method for planning _t run time that incrementally bu|]ds up plans

at multiple levels of ,_bstraction. The plans are continually updated by information from

she worJd, _lowing'the planner to adjust its plan _o a changing world during she planning

process. A].l the information is represented over intervals of time, a_lowing the planner to

reason a,bout durations, deadlines, and delays witkin its plan. In addition to the method,

the thesis presents a formal model of the planning process and uses the model to investige.te

planning strategies. The method has been implemented, and experiments have been run to

vMidate the o_'erall appro_h and the theoretical model.
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Chapter I

Introduction

When we as humans plan an activity,we draw upon a vaststoreofknowledge and experi-

ence.This knowledgeand experienceisaccumulatedoverour lifetime,and Jn some casesis

even builtup overeons ofevolutiona_,development.When confrontedwith a new activity

to _n, we may fredthatwe have done _he same or a similaractivityin the same or sim-

ilarsituations, and we c._tnuse that information to suggest what we should do in this Rew

situation. Even when we are confronted by an unfanti_ar _tivlty or situation, we often can

find _p_ts of the si_ua_io_ _nd the activity that will be familia_, so we can piece _ogether

a patchwork plan from bitsof o_her plans.

OccasionaLly, we can fred ourselves in situations that are so remote _rom our previous

expe_iencetha_ we have no ideawhat to do a_first.¥or instance,we can approach that

statein games llkechess,where asnoviceswe ]_rn _he rulesolthe g_me, but we have no

expe_ience or knowledge to sug_;est appropriate co_ses of action. Over time, we develop

the knowledge to be able to recognize fm_iliar situations and rec_U the appropritte actions

for them, but at first we are bmicniiy _earc_ug blindly. _.o handle new situations, we have

the ability to build plans from scratch when our kaowledge fails.

Now conlider the plight of -. computer a_ent dropped into the real world. It ttu neither

experience nor evolution to guide it through _he countless situations and _:_tvi_ie_ that it

willfacein the world. The agent was l_kelyprogrammed _o handle some smallspace of
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situations, but the relative size of this sm_l p_e-pro_ammed sp_e compared to the vas_

space of possible situat|ons it may e_unter makes it much more likely that it will range

outBide of its store of knowledge and experience. As with humans, the computer _gent must

have a facil_._' to _'all back on '_ha_ will allow it _o _e_orL i_ these.foreign environments. And

with the computer a.gent, this _a_ility is even more important, since i_ will need _o rely on

these skills a large percentage of the time.

This thesis _rddresses the problem of ho_ ° s computer agent builds plans in _he case

where it do_s not have pre-¢ompiIed i_ormstion sbou_ how to achieve i¢$ goals. This is _he

skill _ha! the agent win nee_ to have so that it _ fall ba_ on this skW when its meager

store of exper|ences is inadequate for its environment.

The field of planning ha_ spawned _ range of techniques that enable computers to

construct pla_ "_oa_hieve spedl_c goals. Unfortunately, "_heworld is no$ as simple as these

techniques would like zo assume. The world is a complex web of interacting, forces, many _oo

many for the computer to a_count for. And on a sm_er scale, i¢ is even too h_rd to mode]

single human (or other) aEents in the world. So the computer agent can only hnperfe¢$]y

predict wh_t the future holds. In particular, while achieving its ov_ _oals, i_ may fred that

actions do not h_.ve the precise results its Luternal model produces.

The agen_ may also need to monitor continuous events that coincide or overlap. I$ may

need _o _espond w_th ac_io_ over a duration o_ _lme. The ac'_ions _hemeelves m_' coincide

or interact. So the agent must be able ¢o represent and reason about these continuous

temporal even_.

The world wa_ts for nobody, not even the planner. As the envJranment dynamically

changes and moves forward, the advent face_ time constraints within which it must take

_ions, If the agent removes itself from the outside world to think deeply abo, t a problem

it is trying to solve, it m_y awaken ag_.in only to find _hat the world h_ passed it by, and

_he problem has _her disappeared, changed, or progressed to ;',he po'mt where the ori_.ual

_olution is worthless. So the a_ent must be able to work within _ing time bounds imposed

from the outside environment Furthermore, it must no_ _ver its tles with the enviro_nent

while it reasons, but rather should monitor the world and change its internal mode_ of _he
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world, sad its rebuking plan, accordingly.

We present a pla_ing method that reasons about this dynamic world, continually _p.

d_fing its world model t_ agree with the information it recetves from the outside world.

The world model represents the temporal nature of events and actions. The planner incre-

mentally builds plans to addeve its goals, and adapts these plans to the _anging situation.

The method as a whole provides an _ent with the fadLity for building plans outside of its

breadth of o.xpeHence.

1.1 Existing planning work

Other researchers have delved deeply into sped fie upects of the planning problem, exploring

particular techniques or fox_malisms designed to work weLl within that specific ni_e. Little

attention, however, has been directed _owards finding approa_es _ha.t are approprJs¢e for

the entire probIem ae we have described it. A_ is often the case, adding the additional

requirements of the integrated approach complicates the details of zhe solution, but also

constrains the approsc_ to eliminate many candldaxe approaches. In a general sense this

work follows directly from the constraints that building a real-world planner places on the

process. T_ a re_ sense many of 1:he de_ails were dictated by these constraints.

The majority of cu_ent planning work concentrates on planning in a space of plans

[Chapman, 1987; McA_e_er and EosenbLitt, 1991]. The operations within t_s space are

adding ordering constraints between steps, addieg equaUty constraints between vlu-iabLes, or

adding steps to an existhzg partiaLly.ordered plan. This genera] technique is not gppropriate

for real-time envi:onments, since the par_iaIly.orderad plan does not necenafily contain

_tions that are _pplicabl_ it_ the current world. Therefore, il an agent using this planning

technique is forced to act before completing its plan, it would receive no _p,_dance from the

plan.

TILls thesis Is based on _m incremental p]annir.g technique, Other plannexs for resource.

bounded skuations have taken the approach of _ncrementally expanding a plan (see _or

instance ID|'ummond, 1989; Durfee and Lesser, 1986_ P,ra_ma_ et al,, 19881), but _one has

i
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addressed the range of issues this work does. Existing approaches we lhaited to static

worlds, _uchan$Lug du_m 8 _he pla_ning process, and static world descriptions, ruskin 8 it

cumbersome or impossibleto representthe continuousnatureofthe realworld.

Another approach used to builda plan under resourcebotmds isto use a _quJckand

_irly_ approach to build a_ approximate plan,t.hento improve the plan incrementally

[Rymon ete/., 1992; Boddy and Dean, 1989]. The advantage is _ha_ oftenthe rough

approximationisan executablepl_n :fromthe currentstateto she desiredgo_lstate.But

the a.pproxim_.teplan may be azbitrarUybad. In addltion,the approximate techniques

again uSesimplifiedworld descriptionsthatdo not capturethe dyna.micnatureofthe real

world.

Fon'nalapproaches Zo resource-boundedplannin8 are designedto exploreand an_yze

featuresof the plsnnin_ processunder specificand casefullycraftedconditions[Horvitz,

1957; Dean and Boddy, 1988;Ginsberg, 1994].These conditionsare even more severely

limitingthan for the other resource-boundedplanning approaches,and the usumptlons

hold foronly a minuscule portionof the universeofplannin8 situationswhere a planner

might be needed.

The most populartechniquefor"f_t" reM-time plmming has been to precompileplans

fora]]or many poslibleworm situations[Schoppers,1987;Mulder and Braspenning,1992].

For a limiteddomain that can be carefullycontrolledthisisattractive.Afterall:1:hl_

placestheproblem ba_k intothe regionwhere the¢omp-ter can relyon existingexperience

and knowledge to solvethe problem, which we have saidseems to be preferredat lea_t

by humans. The problems are twofold. The "experience" mus_ be senerat_ brute force

ra_her than throush experiential learning, so generating this knowledge is a formidLb]e

computational task, not to mention a daunting storage and retrieval task. And beyond the

ed_e_ of its knowledze, the computer a_ent i_ lost, _Jth not even a shred of _nform_ion

_o tell R what to do. In a real-world domain, the _torage _nd computational complexity'

would make it unrea_sti¢ to _tore al_ possibilities° or even a l_rze portion of _he space of

po_.sibllRies,sothe chanceofthecomputer agentstrayingbeyond _he lim_t_of_ts_nowledge

|_dangerously,and we think unacceptably,high,

- " _I | i



J.2. WHAT IS REAL TIME? 5

The use of abstraction in planners is a well.a_cepted technique to organize the planning

processand make itmore e_cient. Existingwork has focusedon constructingand using

abstractioninplannersfreedfrom the concheso:"resourcebounds [Knoblock,1991;Unruh,

1993].But sinceone ofabstrac_ion'sintendedeffectsisforei_ciency,itisnaturalto apply

ittothe problem ofplznningunder time constraints.

Sincewe have argued fors world in which eventsand actionsoccur over intervakof

time,our own work restson work forrepresentingtemporalinformation.The researchtha_

focuses particularly on temporal representation is concerned more with the properties of the

temporal formalisms than with their application in a resource-bounded environment [Allen,

1983; Dean, 1985; Veto, 1981; Penberthy, 1993]. Since we are building on the ideas, we use

temporalrepre_enta¢ionmore ass coo]_han an end inizself,sowe are more concernedwith

the detailsof how to represen_and reasonabout time ina way'that willsupportour more

generalplanninggoMs.

One of the fundamental distinctions of this work _om much of the rest of the _eld is

Itsexpllclta_tenfionto the fact_ha_ the world isa dynamic a_d somewhat unpredictable

environment.Thus any planning_ent withinthe environmentmust be prepared_oreceive

informationat any t_me th&tchangesitsmodel ofthe world.Furthermoreitmust lncorpo.

racethat informationintoRs p1_ning process,modifyingizsp_n as necess_/to account

forthisnew |nformation.Traditionallyplasningm_d replanninghave been considereddis.

jointoperations.We willa_gueth&t the two are inseparablem the chan_ng realworld,

where informationmay change during the plannlngprocess.

1.2 What is real time?

The term "realtime" hu nearlyasmany definitionsu thereareresearcherswho investigate

it [Lai_eye_al.,19aS].A common de,hi,ionisthata real-timesystemshouldre_pondwRhin

a fixedtL,ne bound. Ahhough producinga responsequicklyisImportant,our emphasis is

no_on che in[¢i_responsetime.but r&_heron the i_crementM improvement oftheresponse

over time.
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A fixed time deed]Jne is import_.nt for al_plications where a single response is required

witch a.hard deadline, after which the response is useless. For example, a syswm producing

real-time video output would need tO produce a new video image ever}' 1/30th of a second.

In our work, we _re more interested in situations in which the time deadlines are variable,

even po.qsib]y changing after the agent receives them and st_u-ts to plan. Also, the deadlines

m_y be too short for the agent to produce an op:im_d solution. Therefore, we are particularly

concerned with the _,biIity of our method to adapt _o wh_,tever time resources are available.

The absolute an_ount of time is not of paramount importance, a_ it is Jn rea]-_ime control

systems, l_at]_er, the crit|cal feature is the behavior of the agent under a range of time

bounds, where the bounds themselves may change duTing piAno,Aug.

1.3 Contributions

This thesis "tribes a_ approa_ to planning that constructs plus under time constraints

while adapting to changes in the world. In particular, the planni_ me:hod demonstrates

the following abilities:

The method operates within a_bitrary and changing $1me bounds: building the best

plan it can within the amount of time available. Given more time, it w_ produce a.

better, more complete plan.

The method continually incorpora_s new information into its model of the world and

adapts its phu_ accordingly.

The method represents the dynamic and continuous nature of information a_d events

in the real world.

The desLred planning behavior is achieved by inctement_.[ly bul/ding plans at multiple

levels of abstraction. In partlcula:, the approach is realized in the fol]owlng w_ys:

• The approach incrementally builds plans at multiple levels o_ abstrac:lon. The plan

at any given level of abstraction may be incomplete, but is still used _ a par_;ia]
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framework around whirls _he planner can build more specific plans. As the abstract

plans deepen, they provide a more constraining and stabh framework for _he specific

pla.ns, but even in an incomplete state, they offer guida._ce to limit the search through

the more specific space.

_I'he approach plans forward in time, s:arting from the cu:'re_t state and adding oper-

ators that lead cowards 1he goals. This ensures lhat the_e is'always a plan prefix that

is applicable in _he curren_ situation, even if the planning process has not completed.

If the plan has been expanded at the lowest hvd of abstraction, then the prcfLx at

that level ca_ be executed in the currentsituation.

The approach merges planning and replanning into a sea.,nless and inseparable process.

A plan is a changing data stntc_ure, changed by the planner adding actions ¢o it, by

the wo_ld changing ia _zanticipa_ed ways, and by the planner revising its plans to

ma_ch the world model.

The approach represenl:s information temporally over intervals of time. h maintains a

global record of its observations, expectations, sad intentions:. _t jas_ at a particular

i_,stant in time, but over all times.

1.4 A guide to the thesis

In thi._ chapter, we describe ¢he problem that ha_ motivated the work in this thesis, a_d we

broadly describe our work and how it extends current work in the field. In Chapter 2 we

discuss _ example that. mustrate¢ the abilities that a planning agent needs to p,'ork in a

real-time, real-world domain. In ChapSer 3 we explore our planning method in more detK1,

elaborating _he particular techniques _hgt endow _he method with its particular behavior.

In Chapter 4 we expand the discussion ¢o iuclude the implementation of the method in a

working system. In Chapter 5 ,,'e present an analysis of the method using a mathem0,¢ical

model of the problem and appro_h. In Chapter 6 we see the results of exlautning the

method empiricatl), for an office robotics domain. In Chapter 7 we go into more detail on
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the existing work in "he field a_d how our work compares to it. And in Chspter 8 we _iscuss

open issues and conclude.

_---- ] I _ I



Chapter 2

An Example

Consider a robotic agent with the zask of building communications _owers out of various

m&_ria]s. For Lustance_ the agent could be building towers using such materials as wood

polu, meta_ poles, plastic poles, cement, or pontoons. These pieces would be pu_ together

iz,_o a base and a latticework for the tower (_ee Figure 2.1).

$_ppose that the agent has descriptions of the domain at multiple levels of abstraction.

At the hishest level of absttactlon i_ could have operators for building pieces of the struc-

tures, for inscance a tower hue or a segmen_ of a tower. Adding each pkce of a tower

depends on'previous pieces bei_ _here; fo_ _stance, _he agent wouldn*_ plan to put the

top on the tower before it planned r_ build a l)ase.

A_ a lower level of abstraction the agent could have operators for more detailed op_a.

tions: dig_ng hol_s, constructing forms, m_ng ¢emtut, pouring cement, Msembling poles.

etc. A_ain, there are dependencies among some of the operations. For instance, pourin_

the cement requires that the forms are constructed.

At even lower levels the agent could plan the use of tools and ma,.erials _o implement

the operations, and at the |owe|t level the agenl could plan its executable motions.

One day+ the agent receives two tasks: (I) build a tO-foot towe2',in one day, and (2)

build a 30-foot tower in three days. The actual time to build the towers is just under a day

for the smaller _ower and two days for the larger tower, but because of delays the agent wi]J

I
__ w
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J

L, I

Figure 2.1: A robot building a _mmuni¢ations tower.

want to interleave steps (see Figure 2.2). Given the initial goals, the agent gets to work

put.ling together a pla_ to b_zild tke towers. S_:ppose it is on dry land, with a supply of

metal poles, wooden poles, and cement available.

At the most abstract leve_, the available opera, ors that are app15_ble in the currem

state are the operators to baud the bases of the two towers. Building a higher level of a

tower depends on having the bwer levels built, so those operators are unavailable at first.

Since there is no dependency betwun the two towers, the agent decides to add both

operators into the plan as a set (see _'igure 2.3). N¢,te however that *.heagent can be in only

one place at a time, so the time intervals over wh_ the towers can be built are constrained

to avoid ovcrcommitting the agent.

Becaule it only ha_ a.ccess to ¢er_ala base-building tools, for instance a cement mixer and

post-hole digger, for a short time, the agent dectdea to leave the abstract plan unfaztshed

while R expands oul the base-bulldtag plan to _m executable level. It will retur_ to add

more to its abstract plan once it has expanded oat some more specific plans. It could even

start executing the beginning of the plan before it hm finished planning the complete tuk.

The agent expect._ that once it hu executed the actions in service of building the ba0es

of the towers, the bases will exist. Because of possible problems, it will wait until tt gets

confir|na¢_ion of the bu_ _stlng before usertiag the truth of the statement, but it can

I
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Current State

_.._301 tow.rbuill I_

i Qol_: IQ' 1o'.vor buJ_, J- .....

F.xp: mL'_d ImlU _vaJlP.ble

j E_: w¢_JO_ j_ avl_ISbkl,

j F-_: cememay_e K

_p: wmr 8_18_,

,o ' '11 I= P" r_ _.

Figure 2.2' Tb.e initia_ information ava|lable zo the robot. Its goals _re to b_ild towers. Its
current expect&tions are _hat various building materials will be _vailabl_ for tI_e forese_.ble
future _d tha, t some tools will be e,vailab]e for a ]_m-:te_ time.

bull4 _ lawer _ue8

-L
Fisure 2.3: Abstra_:t operators appUcable i;iven the current information.
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plan based on the expected informs_ion.

Since the action to build _ base is much more abstract tha_ am atomic action for the

a_en¢, the next step is to figure out how to reall_ the abstrac_ action. '_o do that, the

agent sets up _ome l_oals _ the next lower level of abstrac'_ion. In p_t_cular, it _,i]l post

Koals that the bases exist within the expected time ranges (see Figure 2.4).

A¢ the lower ]_.vel of abstraction, the a_d_ble operators are comtructin_ forms, n_:dng

cement, and d_$i0__ holes. The _ent a/so knows how to _'ork wftb pontoons a_d plastic

poles, but those _re un_v_dlable, so _he oper_ors that dell with them a_e also unavailable

in the curzent _tate. So for each of the towers, the agen_ ca,, construct forms, mix cement,

or dig holes for t]_t tower. Given that _orms hsve been built ,_ndthe cement mixed, the

cement can be poured. Given ¢h&t holes _e _ug, poles can be assembled. T]ds gives

the a_en_ a number of possible action sequences to consider. For institute it may plan to

construct forms, mix cement, _nd pour cement for one of the base_.

Becauee cement ta_as _ while to d_y, the _ent prefer_ assemb],ia8 metal or wooden poles

for _he sm_ller tower, s_ _he deadline is short. In a_lditlon, the extr_ _trength a_orded by

the mete] poles is preferred over the wooden poles. For the taller tower, the added ,t_b_t),

II I
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',----/ Dw,_re_ofIo'towers_

..,,_Go_.l_r_t Iotas for _' 1oase Goals to hllvev J)IUIIIB

,_,_ mix _ment f_' 10"_ and noxt ngmen! of

cot_lJ_ forms for 10' NSO elCh tower Dullt

4_ill01etkarlCYbue, at'_ ,[--"'""'_ -- Uf4r_ltwoOdenl:_lNforl0'1Ollle
constr_ fon_ and mix oement for 30 I_se_ an4 po_r (:en'_m!h)r 30' IMae

Figure 2.5: Furthex abstract sear_ may constrain the lower-level search and may chLnge

the best pla_ at the lower level.

of the cement base is prefe:ra,ble, so cement is preferred for that. So the &gent _vors the

plan r.hat builds the base o/" the sm_er :owe_ our of ._'ooden poles, and the base of _he

t_ller tower ou_ of cement.

The agent then uses this partial plan _o generate goa/s at the nex_ lower of level of

abstraction, where it will begin to plan the more detailed use of tools to implement _he

sWpe it has decided to _se. The deta_ed plan itself is _hen used to _ener_e _oals for

low.level executable robotic movements.

h'ow the a_ent re_urns _o |zs =bs_rsc$ plan, a_dlng another step. The next sta_e ofe_ch

_ower le pknned. The sho_ _ower m_v be butl_ in one more step, while the taller tower

requires a f_-_vmore steps. But once zgain, the two are independent, except for the shared

resource of the _en_, so they are added to the plan as a set. The abstract plan no_" has the

a_ent building the e_.zire short tower and the base and first se_nent of the second tower.

The new steps added _o the abstr_a plan are now used _ furthe_ goals _or the lower

level plan (eee Fisure 2.5). In p_rticul_r, now _h_ the tower structure is bein_ planned

more ¢ompiete]y, the agent ma_ notice that ,sln_ metal poles for the bases is ]nadvlsable,

bec,_use _ Iarse number of metal poles may be needed for the cowers themselves. So _he
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additions] goMs constrain the choices available at the lower level In particular, the agent

wm switch from metal to wooden poles for the smaller tower.

A'_ this point, t_e agent 1._axnsthat other const_ction _ents in the ares have depleted

the water source, and that there won't be enoug_ water for the cement for e. day. This

precludes the possibility of mixing cement for tha_ time period. This drastica]].y ch_ges

the pars of the plan that deals with the larger tower, which now would not be Jtnished in

time given this delay This narrows the choice of plan prefixes to _he point where building

the base with wooden poles is clearly preferred.

Ar this point the agent _ comm/t to the plan using the wooden poles, considering the

rime ava/lable and the superiority of rh_t possibil/ty. 5o it now can begin executing the

plan_ The agent will build the ba_e of the shorter tower because of its dea_nes.

While the bases are being builL the agent may find s tool missing and may have to

use a different tool to.ac'co_np_ish the same task, "but the sm_ change doesn't disturb the

overall plan,

The _ent cor.tinues on with its plat for bu/lding the remainder of the towers. While it

is. doin8 that, it receives word that the toner tower mkou]d really be only 20 feet tall. Tb_s

changes the part of the plan for that tower wkile leavtn8 the rest of plan u_sffected,

The o,gent fin._shesthe base of the first tower, and now moves on the the rest of that

tower and the base of the second tower. Because of the deadline for using the post-hole

_iggex, ir decides to begin the base of the second tower.

However, one of the other construc¢ion sSents accidentally backs into the sh'esdy.

constructed base of the shorter tower and dislodges some of the poles. So suddenly our

agent's be_d that the base is done has been contradicted by Infomat|on It receives, and it

will have to replan that par_ of its plan,

In this way the plan for consideringthe towers gets developed incrementally and mod-

ified as new information a_rives. The agent executes the beginning of the plan before it

finishes expanding the plan completely, and continues to _d _o the plan while it is execut.

ins.

The construction a4_ent,exhibits the types of abilhies that the work in this thesis is
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designed "_oproduce. In parti.mlsr:

• The agent builds plans incrementally a_ multip]e levels of abstraction, allowing it _o

meet 4ea_nes ss _hey appear. The agent first b_lds su abstrsc_ plan that includes

steps for building tower bases, then expands that to an executable level because of

time constraints on the tools available for building bases.

, As the abstract plans are excended, they add constraints to the more specific plans.

The addJtiozzal h_fo_aation about how the upper segments of the towers will use metal

poles cons_rMns che agent to avoid using metal poles for the bases of the $owers.

• Tke agent represents a_d reasons about _empor,,_ information, including deadlines,

durations, _ud delays. The agent is given dea_Unes _o begin with, and ie_rns abou_

new ctea_ilines as it expands its plan. I_ receives information about _he lack of wa_er.

and reasons about the delay tba_ wo_ld add to the plan.

o The agentadaptsitsplan¢ofitthe currentstateoftheworld.As itreceivesinforma-

tion,the agen¢incorporatesitintothe evolvingplan. When the agent learnsofthe

lackofwater,orthe damage tothe shortertower base,izmodifiesitsplansaccording

to$he new informatJo,_,and continuesplanaing fron_thatpoint.



Chapter '3

Abstraction planning in real time

We dmcribe the approach by decomposing it into its representation, its method for plan

cons¢ruction, and its rephnning behavior. The representation is the foundation on which

the planner is b_/ilt. Since the planner is designed to work with concepts and actions over

time, the representation is designed around a temporal framework. The plan-construction

method is described by _irst explaining in some detail how individual operators are selected

and added to the plan. Then we step bac_ to see how the plan _s a whole develops at multiple

levels of abstraction. We then Re how replauni_ is integrated into the planning method..

both iu terms of individual operators and in terms of the overall behavior. Although many

of the details have been Jn_uenced by what we learned from implementation, t_is discussion

is restricted to those aspects that would appear in a_v implementation.

3.1 Representation

The bulc representation for operators derives its general form from fl_e clusical planners

such M STall'S [Fikes and Nl]J|on, 1971], YosLt._ [Tare, 1977i, SIPE [Wilkin_, 1988i, and

D_vIsER [Vere, 1981], although some details have changed to support the particular needs

of this appro_h. The representation for states requires a general temporal representation,

such as Time Maps [De_n, 1985]. Again, there are particular features that are a_!pted to

this particular approach.

I
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3.1.1 State representation

The state of a planner must be expressive enough to represen: the information necessary

to decide whether to plan and when to take particular actions. We choose for our state a

repre_n_ation that c_ptures the internal mental state of the planning agent. The internal

mental state captures not just the agent's beliefs about the curren: state of the world, but

also its beliefs abou: the past _rtd future. This is _u extension of traditional planners:

which view states as points in time. The e.,cpanded notion of state is because the choice of

an _ction may depend not only on what the world sta_e is at a pro'titular point in time, but

a_so on the state of the world before and after that time. For instance, if the agent is driving

towards a cliff', it must anticipate that k expects to drive off the cliff enouf_h ahead of time

to be able to brake to a stop. Or an agent may decide that since a warring sensor has been

on continuously for 60 seconds, that it should take an action to correct the problem. To

handle these sorts of situa'_ions: the agent acts based on its complete mental state about"

the pMt, present, and future.

Thus our idea of state is a tim_ne of intervals 1 representing _he mental state of the

agent. We divide £he thnel_e into three distinct types of information: occurred, expired,

and intended (this is derived from [Ash mid Hayes-Eo_h, 1990; Pardee eta/.,1989]). Oc-

curred intervals represent readings from tbe ser.sors wi_h m/nimal interpretation. Expected

intervals represent the agent's derivations about the world. Information from the occurred

intervah is copied to the expected interval, along with inferences •,bout the persistence

of occurred intervals and predictions, and other inferences made by the planner or other

computational pro _ses within the agent. The intended intervals hold the goals of the

agent--both the inJti_ goals that the _ent is trying to achieve, as we]] as intermediate

goals generated within the planning process.

By dJstix_uish_ng these three types of tlm_nes, the agent can compare the information

on them to derive information that will drive its plan_ing behavior (see Figure 3.1). For

instance, if _ interval appe_rr, on the occurred tlmellne that co_cts with a correspondln S

'We u_e the telm Jntert'olto t_a.'r _o • propositlo_ (in particular, ths_ • parameter _tbfie, • predicate)
aversmLn_erv_/oftime, We u_ethe term elm¢s_terva_to refer¢othe lntervs/of time
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11[ °cc: x =$ I

12 '[eXP:x= 5 '[

B I i.nt:x=5

141='y'6 1

time ,, ,..-

Figure 3.1: A planning scaze. Interval I_, I_, an4 Is are compatible. Interval 14 mismlatChe.s
with Is, indicatin8 that the expectation Is is not met. lnter_ .re n_sma_ches wit]_ interval

I_, indlcathtg tha_ in the current state, _he intensions _re not expected _o be me_.

inter%_l on she expected _imeline, the agent ¢e.n in_er that its expectations may be incorrect;

thus, any plan based on those expecta¢tons may need revising. If the went generates an

expected interval shat conflicts wish *n intended interval, it is predicting that k w_ll not

achieve one of its 8oals; thus, it may be necessary _o add to or change its plan _o ar.hieve

_hat _oal.

Underlying temporal repreaentation

The temporal represen:ation necessary to support the pb, rLuins method must capture a wide

range of constraints among time points. All of the reasordng i_ the system is expressed in

terms of time intervals, but constraints on the endpomts of the interwls susgest a point.

based approach. The particular constraints that are senerated are:

• _s a t_c for time polnts _t and _2, an arithmetic relation R (one of <. <, =, #, >, >),

and & numeric constant c.

II
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• t R c for a time point t: an a,rithmetic relation R, and a numeric constant c.

This issimilarto Reid Sm'u_on'sQuantity Lattice[Simmons, 1986].

Time intewals ace built, out of these time points. We make a careful distinction between

open, closed, and half-open intervals, because the)" make an importcut difference when

fiEudng out, when and whether actions a_e applicable. For example, if a_ action is p]_umed

to execute as soon as a condition occurs, then the action wLUoccur over an inte_._l tI_t is

open at the sta_ time of the condition. Without the distinction, it is impossible to correctly

determine whether an action is applicable in a given dtua$ion, a_d unintended loops can

result. So a time interval is of the form (etar_-¢ile-bo_md end-'_i=e-bound) where

a time bound is of the form (relation cite-point), where a relation is the appropriate

arithmetic relation, in this case denoted as one of :1_, :Ze, :eq, :he, :ge, :$¢. For instance,

to represent, the half-open inter_,al [0,10), the time-interval would be ((:ge O) (:1¢ 10)).

Given this repcesentation, we also need to make a distinction between necessity cud

poscibilit_: When looking up to see whether a time-point t falls in an interval i, the system

may find that t is nec_sarily outside of i, possibly whhin i, or necessar;ly within i.

3.1.2 Operators

Operators, as in any state-ba.,_d classical pla_ner, represent a transition from one state to

a_other. We genexalize the traditional appro_:h to allow L set of operators within a tingle

state transition (as in Drummond's Situated Control Rules [Drummond, 1989]). We discuss

sets of operators in more detail in Section 3.2 below. But a state tr_ndtion, whether by one

operator or a set of operators, will involve a change to the expectations in the world state.

Condder the set of actions that an opera, or (or set of operators) generate_. The_e actions,

when executed in the world, have _ set of expected effects. The effects a_e expectations

because the system cannot nece_rily predict with precidon what effects the actions

produce in the real world. ]_nmany case_, sensor readings w_l_ confirm or deny the _ucce_s of

the a_:tions at execution time. but at plannini; time the system can only post expectations

abou_ the actions' effects.
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precondi_ tons:

((robo1:-:loca_ion Cage O)
rob-lot)

(gran_-loca_ion C:ge O)
resource condil:_ons:

((robO_lreeo1_ce (:ge O) (:1_ 10))

(sran_-resource (:ge O) (:1_ 10)))
actions:

((p_ckup-gran_ 'C:$e O) '(:lt 10)))
effects:

(C_rttu=*loca_ion '(:ge 10) '(:le lO)

(:le O) (_ value :no-value) :assign

(:_.e O) (= value rob-lot)))

: a'_-robo'c : at-robo'¢))

Figure 3.2: A sample operator to pick up ,_ _nt.

A single operator has preconditions and postconditions that are simUar co a classical

planning operator, but with added t_me intervals. The conditions describe the time intervals

over which she conditions must be true for _he operator to legally execute (see Figure 3;2).

Each instance of a_ operator has a_oci_ted with it Lu operator execution time variable _.

The range of t is tho_e values for wl_ch each of the preconditions is true. Each precondition

of a_ operator is of the form

(parue_er-nme el:arc-bound end-b0und value-_es_

:Ul4Sn _emp-va_.able)

The start-bound and e_d-bound describe a re_:e t_me _n_erv_| over which _he condition

must hold. A relative time interval ( :g, a) ( ::_, _) describes _he time interval I_+_, :÷hi,

where t is the operstor execution time. A precondition i* true when its _'alue-te_t is true

everywhere within the interval [t+a,t+b 1. The process of _v_ee/n_ an operator, or flnd_n$

whether it is applicable in the current state, is _he process of re_tric_ing the range of _ by

m_tch_n$ succe_ive precondl:tons ag|dnst the state,

The "_lue-test ls the function that tests the condition, tak|ng :he p_r&meter', wlue

a_d returns T or NIL, a_d the temp.var|_ble uslgnment (optional) stores the value of _he

paramet_,r for a particular ]ns_a_lco. of _he opera.tot. Since the value-t_ m&y adm[_, more

th_n one v_ue (for insta.uce, a te_: that the value is less than 3 could m_tch |ntervah where

I
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the v-alue was, say, 1 and 1.6), the assipment is done for t,he value at the start o_ the

_uter_l. The temp-variabk may be used in the ,_ue-tests of subsequent preconditions, as

well as the _tions of the operator. The assi_nmem could be generalized _o save she entire

histoQ, of the para_neter over the "_imeinterval, but at _he cost of additional computational

complexity in later conditions tha_ inspected the value.

A pazameter may appear in two conditions of an operator. For inst_ce, the operator

might look fo_ _u _uterva] over which a parameter satisfied one relation followed by an

interval over which the paxameter satisfied another relation.

Additionally, an operator has resource conditions, which describe a common resource

chat multiple operators may share. A resource condition is of the form

(resoul"ce-name s'car_-bound end-bound value-te8_)

with the bounds _nd wdue.test havin$ the iLrne me_nin_ as in a precondition. For example,

a blocks world opera, or w move a block with a single robot arm wo_d use a resource

condition on the robot arm so that other operators needin_ the arm would not be planned

concurrently. They are particularly used with sets of operators, discussed in Section 3.2.

An opera'_or adso has bindin$ conditions, _hlch are meant simply to ret_eve parameter

wlues needed for :he actions, but where the current value is not a conditio_ on the legality

of the operator. A bindin_ condition is of the form

(pe,_-a_e'_er-n_e Z_,_e-value : aesJ, Ku _:_p-var_able)

For i_ta=ce, a bindins condition on a simple robot.motion ope_ato_ could bind the actual

position in the binding condition if the robot's motio_ is independent of its position (as

in an open spa_e). These _re separated from preconditions because a _ange in a b_udin_

conditio_t parameter will not require that an operator be re.evaluated.

The a_tjons of an opera_o_ describe the executable actions Jmplemen_in_ an operator.

if the operator is executable. In particular, e_h action is of the form

(action-nine _;ar_-bound-:_or_ end-b_und-form

e_a.r_-value-fora ond.-value-form)
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where Jdl the forms are executed in the environment of all of the temp-variable bindings

¢o produce the time-interval, start-value, and end-vslue for the action (the start.value and

end-value allow the action to be pa_ete_zed).

The expected e_ects of an operator describe the expected intervals that result from

executing the operator. They are each of the form

(paramel:er-n_e s_a.r't;-bot.t_d-_orm end-bound-form'

s_a._-value-_o_ end-value-_orm)

where all the forms are executed in the environment of all of the temp-variable bindings

to produce the time-interval, start.value, and end-value for that elTect. If the inter_ls

of the operator's effects s_art before the end of the lut precondition inzerval, it would be

possible to produce a sequence of operators that actually move successively back in time (see

Figure 3.3). There is no prohibition _gainst having overlapping preconditions and e_ects,

though, since the backwards-_ing operators are a degenerste ca_e, and the added power of

overlapping operators may prove useful in some dome, ins. The o_y effect this has on the

approach is that the default heuristic for cleciding whether a goal cannot be achieved relies

on forward._ring operators (described in Section 3.2.1).

Triuering an operator produces s range of time-points (actually, a time-point witl_ a

range of values) within which the operatm" can be legally executed. The operator's effects

are then computed bMed on che lega_ operator times, along with che varisbles bound by the

operator's conditions. The process of trilgering an operator is desc:ibed further in Section

3.2.

8.1,S Hypothetica! worlds

A tr/uered operator is not necessarily executed. It is merely added to the set of opezators

being considered for inclusion in the fins] plan, alon_ with all the other possible operators.

Thus its effects are hypothetical, and _he currem world state should not re_iect the expected

effects of a merely hypothesized operator. Therefore, a_ with a traditional cl_stcal ple.nner,

multiple states are maintained ¢o hold the po, Jble world states that the planner would find
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C_rrel_ $_&te:

z = 0 [10,20]
U = 0 [S,ZO)
J = 0 [0,5)

Operator ol

preconditions:
CCx C:$* O) (:Ze 10) Czer=p venue)))
e_fec:J :

CC7 'C:g* o) 'C:1, o) O 0))

Ol_r&tor 02

precondi_ion8:
(Cy C:ge O) C:le S) Czerop veZue))_
effe_s:

((z '(:ge O) 'C:le O) 0 0))

Operator o3

precon_i'_ions:
(Cz (:Zo C) (:le S) (z_rop valuo)))
e_fe¢_8:

CCz'C:ge O) '(:Ze O) :t 1))

The sequence of oper&_o__c_ecution, wtll be:

oz w_'chopera_o_ execu_ion _ime 10
wi_h opera, or execu_ton _ine S
vlzh opera, or ezecu1:ion_ime 0

. Figure 3.3: A se_ of operators _ha_ will appear to ftre in reverse temporal ordvr.
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itselfin (i.e.,what expectationsitwould have)ifitwere to followa particularplan. With

the expanded notionofstate,however, mahttsiningmultiplestatescould be prohibitively

expensiveifdone naively(thisproblem was acknowledged in Tom Dean's thesis[Dean,

Our approach manikins multiplehypotheticalworldsby recordingdifferencesbetween

subsequent hypothetical worlds. Each world can be considered a ma_k on the previous,

supportingwo:Id(s),_anging only thoseintervalsspecifiedinthe di_erence.In partic_ar,

if a hypothetical world spe_es a value for a parameter over the _ime interval !_, t2] but no_

over the time interval [_3, t_) or (_, ¢4], then the value of the parameter over the time inter_

[t.3,t4] is the value of the parameter in the supporting world for the time intervals [t,_,t:)

and (t2,t/], and the value in the hypothetical world over [tl,t2]. Note that the lookup i_

the s_pponing world over the two time intervals may recur if the supporting world is itself

hypothetical. This m_es lookups more complicated and computational_y complex, bux it

makes world updates more etticient (since elects don'_ need to be propagated throughout

the entire state network), and it reduces the space complexity as well

The funda4nenta] behavior of the approach doe_ not depend on Raving hypothetical

worlds represented by di_erences, but it rather represents _ decision about the _ime-sp_ce

tradeo@. The ditference-ba_ed representation does m_e it more straightforward to identify

_tions _hat are appropriate for a part|c_l, ar wo_ld, since the only i_ter_,ls within the

representation for a hypotheticM world are those inter,,_ls tha$ differ from the supporting

world. Therefore, actions that are triggered from intervMs in a hypothetical world Lre

necessarily dependent on fe_ture_ p_rticu]ar to that world.

Each hypothetical world has one or more fouader_, which are the interwds that are

axiomatic In tha_ world. They describe the fundamental cha_ges that distinguish a hy-

potheticnl world from its supporting world. All other difference between a hypothetical

world and i_s supporting wor_,d are derivable from the founders added to the supporting

world. In the ca_e of planning, a se_ of instanti_ted operators is the set of founders for the

hypothetical world in which the operators are executed. The operator_' effects are derived

from _he instaattated operators, and appear in the hypothet_ca_ world.
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procondi¢ Lone:

CCpole-state C:go 0) C:le aS) C= ve2ue :bending))

Cboll;-e'ca_, C:ge tO) C:le tS) (= vatue :do:EoraLng)))

C(_aL1uro-eeaee '(:ge 0) 'C:le aS) :deforaa'_.on :d_oraa_on))

Figure 3.4: A sample abstraction r_e.

8.1.4 Abstraction

From a representational point of view, abstraction is a way of reformulating information

from one reprezer_tatioa into a di_erent, simpler representation and back again. The tra_s-

formation rules for ab_rac_ioa ace represented similarly to the operators deecr|bed _bove.

The _bs_raction rules ace represented temporally to allow an abstract proposition to reflect

a p_rn of specific L_ers'ab. For instance, the bending of a. pole over a_ L_._er_] [_, t + 15_

accompa.ated by the deformation of a bolt over the iater_zl It -,- 10,_ + 15] might represent

a particular type of failure, e&y deyorrne_ion failure, that is meaningful to the abstract plan

(see Figure 3.4). IS_he specific state contains aa interval of pole-bending over [15, bO] and an

inr,erval of bolt-deformation over [30, 50], then the abstraction tale wtl] generate an abstract

in_er_ of deformation faiJure over the interval [20,50].

An &bstrtction txtnsformation has l:reconditions and e_ects. "fhe preconditions ace of

the form.

(pa.rtae_er-_a_e e_:cc¢-bo_d end-botmd v_ue-¢est

:ase_.gn ce_p-vearXable)

wh|ch is exactly the .me as operators. ]:he effects are of the form

(pt.ta=e'_er-z_oae sCt.r¢-bom_d-_cr_ end-bou.nd-for_

II¢ I.¢Y,"VSl _te':f orb end-va].1_s-_ otis)

whic]z,ehoald look equally famitlac.

When _he preconditions are true, the effects describe the transformed represent_tion of

the sa..ne information (this works equally well for propagating informatior_ to more abstract
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and to more specific levels of abstraction). The difference from oper&tors is in _he fact

that whereas triggering an operator produces _ legal time inter_] over which the operator

could possibly execute (so it produces a time point within the*' range), an abstractioz_ rule

produc_s a time interval over which she transforms:ion necessarily holds (so it produces a

time interval describing the range).

b'ote that we make no assumptions about the actual form of the transformation, other

than tha_ v,'e are able to tr_form information both from less abstr_t to more abstract a_d

from more ab,tr_t to less abstract levels of description. The actual trandormation rules

are dependent on _he s_ructuring of the a_bstraction hierarchy and must be appropriate _or

the operators at the corresponding levels of abstraction. If, for instance, one were to a_lopt

_e representational scheme used in A]Ssl"al_s, then the traasforma_ion to _ more abstract

level would consist of dropping conditions in the final goal--¢ondhions with a criticalil:y

ignored by the more abstrm.'t leved--and of dropping no information in the st&tee (simce the

ltates do not change, but only she operators aad *'he goa/s). The trandormation downward

would also delete no_hing, since the intermediate goals are of the same representalion in the

abstract level u _hey are in 1:he specific level, jus_ with some conditions unspecified. In a

GPs style of abstraction, the transformations would comp|ete]y reformulate the information

into the representation of _he other layer.

3.2 Planning

Planning is the process of _mding _ set of operator., that will lead from the current state to

a state in which the goa_s are _a_ieved, or at least are expected to be achieved. For phms at

multiple levels of abstraction, the_e plans are bulk at ea_:h level, with information _iowing

between adjacent levels. For a planner under time constraints, these plans m_y not in fact

achieve alJ *,he goa]_ or may _hieve some of *'hem suboptima_y, since there may not be

time to complete the planning p_ocess.

We f_ de_ what happens withln one level of _bstraction, in terms of trlggeflng

operators and _ddlng them _o the plan, and _hen step back to see how the diiTerent lev_is
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pre¢ondi_ions:

CC= C:ge o) (:Ze _0) (= vaZue 3))_
effects:

(C= 'C:p zo) 'C:I. 20) 4 4)_

Figure 3.5: A simple operator that adds one to the p_rLmeter =.

of abstraction interact to form the overt61 plan.

3.2.1 Planning at one level of abstraction

Plmmiug within one level of _bstn, ction involves finding a legal set of operators for each

state, and adding those operators to the plan in an order mos_ '_kely to lead quickly to the

_;oal. We describe each of the components of that process in turn. First, we describe how a

legal operator is found. Then we describe how it is added to the plan. Finalty, we discuss

the control ute_ to choose the best operators to add to the plaa_.

• _rl|Eering operators

Each tnterva] a4ded to a state may allow a= operator to execute in that state. It may be

eno_6h by itsel(to triuer an operator, or it may be j_st _he missint; piece of a larger puzzle.

For instance, an inter_I wheze =_= 3 over the time interval [5,15] _]J clearly trigger the

opera, tot in YJ_p_re $.5. But suppose an interval instead _serts x = 3 over the Interval

!9,10], where _he state airea_ty contains z = 3 over the intervah [5.9) and (10,15]. The

new interval would _ain make it possible to execute the operator, but in this case it is o_ly

pa_ly responsible for tri_erin8 the operator. Therefore, etch operator must be considered

over the range of possible time= that the new interval c_u]d assist with, not just be entirely

responsible for itself.

G_ven an interval over the time interval its, t2! a_d s_corresponding operator precondition

over _he relative time interval [_,t_J, the time inter_l that mus_ be considered for :he

operator execution time is i_ - _. t= - t_l. We mean by operawr execu$ion time the time

point t with respect to whi_.h all of the conditions of tJ_e operator wi_ hold, r.h_t _s. _'o_each
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precondi¢ions:

((x (:ge O) (:is Io)

(y (:g6 5) C:le 15)

(z (:ge 10) (:is 20)

_-y)))))
eZ_ec_e:

(Cz '(:te 25)

(numberp value) :u|_.gn '_emp-x)

(nu=berp value) :us_.p '_-y)
(and (numblzp value) (= v_ue (_ _emp-x

'(:le 3S) C* _'_p-x :_-y 2) C÷ _emp-x Ce:p-y 2)))

Figure 3.6: An ope_tor fo_ iUu_rating ope_tor _ri_ering. It triggers when e_length-L0

interval of z is the sum of = l0 time units earlier and p 5 time units earlier.

condition C _h a rela_:ive time interva_ [_, t_], C is true over the time interval is +t_, t +s_i.

Thus the operator execution time range is _, time po|n_ whose value Js constraJne cl _o be

with_ the time interval it1 -_, t2-t_]. Given the interv_ over [tl, zg] and the precondition

over [_, _], note that if the start bound of _he tnters_l is open, or e_ther of _he bounds of

the precondition is open, the resulting operator execution _Lme range is open a_ the left.

Similarly, if the end bo'_d of the inter_ral is open: or either of _he p_e.cond_don bounds is

open. the re'ulting operator execution time r_nge is open a_ the right

This operator execution time range represents the broadest possible range of times for

operator execution. Once this _ange of times is determined, then the preconditions of

the operator are checked to narrow the time romge down to one or more tha_ satisfy the

condi_ons. Each condition is checked i_ turn. If _he current estlme_te of the operator

execution time range is [tl,ta] and the precondition relative time intervaJ |s Lrt'a,t'_4_,then

alJ time intervals from [_._+ ¢_, _ + _] through [_ + _, t_ + t_] are checked to see whether

they e_tis_ the value rut. This is done by colle_ing the values over the time interval

[h + z_, z_ + t_], separating off _he sub-intervals in which the va/ue test is s_tisfled, and _:hen

retur_.inl_ those sub-in_:erval_ that are tong enou[h to contain _he time iuter_ [c + t_, c+ _]

for some c. Note that this may return a set of sub-intervals, and in thi! cue the ope,_tor

_r_ggering procedure splits and _es to Jnstantiate the operator further _or each of the

sub-intervals.

An e_:smple may make this clearer. Cor_sider the operator in Figure 3.6. Suppose the

I II • a
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current state contains the following inter_s:

= 5 oyez C0,202

z = 3 over [2S,40]

;: 8 oyez [3,13)

= 13 Dyer [0,25_

z-- Ii Oyez [26,49]

Now suppose a new interval is added, either from e,_pected plan effects or from the envi-

ro_mer.t, _sserting _ -- 8 over [13,41]. The steps to triuer the operator given that interv'_l

are the fol/owing:

1. The bounds on possible execution times for _he operator are determined from the new

interval. B)" the formula above, the operator execution time range is cQns_rained to

the time inter_z/[-2,36i.

2. The time range [-2,36] is now checked _ainst the first precondition. The precondhion

relative rime interval [0,I0] sugges_,s a time inter_"_l of [-2,46! in whim to find time

interns where = is a number. There are two such time intervals, [0,20] and [25,40],

which, when transformed b_ck viL _he precondition relative time in%erva_ [0,I0],split

_he execution time raage into two ranges: [0,10] and [25,301. The v_able ternp-x is

bmmd $o 8 for the £rs_ range and to 3 for the second ,_n_e.

3. The execution time r_nge [0,10] is now checked against the second condition. The

precondition relative time interva/[5,15] susgests a time in_erva] of [S,25_ in which to

find time i_tervals where p is a number. [3,41] is the interval where _ is a _umber, _nd

the portion of this within the checked time interval is the time interval [_,25],which,

when trs.nsforme_ back via the precondition relative time _nterva/[5,15], produces the

execution time raage [0_10], unchanged. In _ddlrion, the variable _emp-y is bound _o

8.

4, Flna/ly, the time r_n[_e [0,10] is checked against the third condition. The precondition

rolative _.ime interval [10.201 suggests a _ime ]nterva} of [10,30] in which to find _ime
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intervals where z = _:+t = 5+8 = 13. The condition holds over the interval [0,95], and

the portion of that wit]_in the checked time interval is the time interval [10,2_], which,

when transformed back via the precondition relative time interval [10,20], produces

the execution time range [0,5]. This is one fula_ execution time range.

5. The execution time range [25,30] is now checked against the second condition. The

precondition relative time interval [5,151 suggests a time |nterv_] of [30,46] in which to

find time inter_'als where ?/is a number. [3,41] is the interval where//is a number, and

the portion of this within the c_ecked time interval is the time int_:_ [30,41], which,

when transformed back via the precondition relative time i_ter_ [5,15], produces the

execution time range [25,26]. In addition, the _risble temp-y is bound to 8.

. Finally, the time range _25,26] is checked against the third condition. The precondition

interval [10,20] suF,ge_ts a time i_terv_ of [35,46] in which to find time inten_s where

= z +// = 3 -I- 8 _ 11. _he condition holds over the interred [26,49], and the

portion of that within the checked _ime interval is the time i_terva] [35,40], which,

when _ransformed b_ck _ia the precondition interval [10,20], produces the execution

time ranl_e [25,26], which is another final execution time range.

The resul_ of this procedure is the determination that the operator can be leggy execul.ed

in the time inteIxa] [0,5_ or the time interval [25,_6].

The procedure i_ eimLlar with open and h_lf-opem intervals, _he only change being that

_inte _he trau_forma¢ion_ _re not necessarily invertible, _he re_r_sformed execution _ime

range mu_t be checked to make sure it still l_es within the original tLme range. For _nstance,

the _irne r_mge (0,5] when combined with a precondition inter_J (0,_], produces a time

i_tervai of (0,TJ. But the time range [0,Tj comb|ned with a precondition inter_l (0,_]

produte_ the identical time Lnterv_l of (0,7]. So when the rover_e tr_nsfortnation is done,

the algorithm tt_ transforms the (0,7] back to the more generous [0,5i, and _hea clips _o

the or_4iinal t|r_e r_m_e if necessary. This en_ure_ tha_ t_e _ime ranges are a_ tnclus|ve am

possible without generating lncorrec_ triggering ranges.

L.
• .. [ __
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Adding operators to the plan

The set of operators that trigger _v_tl_n a state is the set of operators that _re applicable

in that state. Once at. applicable operator has been found for a state, the agent may add

it to the plan to generate further states. Given an operator execution time range l E if1, _]

and an operator effect with a relative time interval [t_J_], a new world is produced based

on this operstor. Since the operator% execution within the thne' range _ is hypothesized

by the agent, it is axiomatic in the new world and is the founder of that world. The

hypothetical world add]tioned]y contains the expected effect of the operator over the time

The set of operators legally executed in a state is restricted to those dependent on

some interve/of that state, sad not dependent solely on intervals of preceding states. ]a

other words, given two independent operators ol and o2 executable in state a2, then if o:,

executed in a_, produces state _, then operator 02 is not executable in a2. This avoids

the problem in simple state-based planners of having to consider all possible tote/orders of

independent operators. But to get the same functionality, our approach allows executing a

set of oper&to_ in a state. In our example, our approach allows executing cA, o_, or the set

{o_,o2}. This ts also potentially a large set of possibilities, but it is of order 0(2") instead

of O(nD, and it more ,u:curately re_ec_s the independence of the operators.

Allowing sets of operators introduces some additional complexity into the problem of

triggering, because of possible interactions a_ong the operators in the set. For instance,

two operatom may both use the same resource, so they must have their execution time

ranges adjusted ,o that the)' cannot be executed in a way that would cause a resource

conflict. Also, if one operator's effects would a_ec'_ anotI_er operator's preconditions, then

the execution time ra, ges ,nu_tbe modified to avoid those times that wou/d cause atcop._Jct.

Operators may be independent even when they have potential re_urce con_cts or

precondition-effect interactions. Xote t_rst ¢_fall_hat all operators legal in a s_ate _re

triggered independently of e/I other operators' e_Tects (in fact, the operators' effects do

not appear within this state, but ra_her in subsequent hypothetic_ ste._es). And second,
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note that we are restricting _he execution time ranges of operators within the set precisely

so that there are no resource conflicts or precondition-effect interactions. The operators'

remaining execution time ranges are such that the operators are truly independent when

executed within those time ranges. Yore that independence does not imply concurrency.

An operator exerted at time 0 may be independent of a_ opera, or executed at time 100,

so we may include them in a se_ of operators. All independence means is that there is no

¢_use-effect relation between a_y pair of operators within the set.

To restrict the operators within a set so that the)' are truly independent, the plan_ing

agent must, as we have said, restrict the execution time ranges so that there are no resource

conflicts and no precondition.e_e¢" interactions. For every pair of operators within the set

of operators, the execution time range of _he two operators in the set is restricted to avoid

these conflicts, and that restricted time r_uge is used in further pairwise comparisons.

To restrict _he execution time range of a pair of opera:ors o_ Lud o2 using resources,

constraints are constructed based on the opera, ors' _hared resources. Suppose for such a

resov.rce, operator o_ has a resource relative time interval [¢_2,t_2 ] and an execution time

range p_. Suppose similarly _hat operator o2 hu a resource relative time interval for the

same resource of It_1, ¢_] and an execu¢]os_ time range P2. Then p_ and p_ are restricted by

adding the constraint:

To restzJct the execution time range of a pair of operators ol and o_ so _hat their

preconditions an_ effects do no_ interact, constradnts are constructed based on p_rame_ers

that are mentioned in the eMecCs of one operator an.d the preconditions of another, Suppose

that o_ has an effect relative time interval [t[_ ,_9] (including persistence) and an execution

time range p_. Suppose siml]arly that operator o_ has a preco,_ditlon reia_ive time interval

for the sa_ue p_re_meter of [t_,t_2] and an execution time range p_. Then p_ and p_ are

restrlc_ed by adding the cons_,raint:

' • ,k I
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The constraints based on resources and precondition-effect p_rs are the most taxing for

a temporal representation. We discuss alternative ways of _pproaching _he problem with a

simpler representation when we discuss the implementation in Chapter 4.

Control within one level of abstraction

Even within a single level of abstraction, the search space for planning is still prohibitively

large. That is, aher all, why abstract|on Js needed L_ the _rst place. Once intermediate

goals are added from more abstract levels of abstraction., the search space becomes more

manageable, but it is still l_rge, and pla_s that actdeve the intermediaLe goals should be

favored over ones that do mot. This fits into the model of bes$-fi:st search, so that is"used

to control the search within a sin_e level of abstraction. The default evaluation function

computes thd extent to which the current plan expectations achieve all the goals. States

_hat more completely achieve _he goals are favored over states that achieve them to a lesser

exten_. For grote goals and expectations, the measure is simply the percentage of the

goal interval where the expectation a_es/disa_es with the goal. For 0-1en_h goals, the

measure i_ all-or-none. For infinite goals, the theoretically correct measure is again all-or.

none, depending on whether the expectation is infLu_te and comple_el.v covers the goal. But

potentially troublesome caee8 appes_ when both are in£nite but the expectation covers all

but a finite amount of the goal (this looks the same to the evaluation as a_ expectation that

accually covers the entire goal), or when the expect_¢ion covers a larte, hut _nite amount of

the goal (this is in_stintu/shable from an expectation that achieves none of the goal). The

pra_tMal, although not a_ _.lean _lution to _his problem, is to set _n upper bound on the

ler_th of an interval for the purposes of evaluation, so there will be a small, but mea_u¢_ble

difference in the cues described above, while preserving the major differences ths_ are used

in most ¢_es.

A penalty may be placed on states ]n which goals ca_no¢ be achieved. Since we do not

know how to weight this appropriately in relatlo_ _o the evaluation abo_e, we do not l_clude

_his i_ the default evaluation _unaion. But We conside: it a potentially useful he, ristic, so

we describe it here. A goal c_tnnot be a_eved over a time interval Jn a state when .1_ of
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the founders of the state star_ after the end of the time interval. As long as one founder

starts earlier th_n tl_e end of the time interval, there rosy be a sequence of operators that

achieves the goal (see Section 3.1.2 for necessary conditions on the operators _or this to be

true in all ca_es).

Commitment

The expansion of opera*ors and hypothe¢ical states may provide uieful information about

what effects we can expect from di_erent courses of action. But w_thout comntitting to

these plans, the agent will not t_e any action, since none of these operators or effects

exist in the "current" state of the planner. Remember _hat the plans may not be complete,

but may represent the best partial set of operators known for making progress towards the

goals.

The agent decides to commit to a pla_ under s number of different conditions. It may

be runuin 8 short on the time ava_labk until its best plan will need to be executed. It may

find that a plan is good enough with respect to the goals that it is will_ns _o ignore other

alternatives and commit to _h_t plan. It may find that one plan, although not outstanding

on its own, far outshines the comp_ting plans, so _ha._ work on ¢he other plans would be

unproductive.

The agent w|U comroJt _o any portion of a plan that satisfies the condhJons for ¢ommh-

ment. The asent continues extending the pla_ _fter committing to a plan prefix, but that

prefix is conlidered fixed.

By committing to a plan, the agent effectively reduces it_ planning search space by

pruv_.g |alternative branches from the search sp_ce. All of the opera,ors of _he chosen plan

are added into the current state, along with their expectations. At the executable level,

any actions produced by the operators are then scheduled fo, execution by an independent

daemon--a simple sort of execution module--that compares _he ¢unen_ time versus the

intended execution time of each action, and _ends the actions to the appropriate effectors

when their time has come.

For the agent to commit to • plan, that plan must be the best one _t _hat level of

i i i ii j __ __ II
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abstraction.Although the agentmay considermany alternativeplanswhileexpanding its

searchspace,italwayskeepstrackofthe bestplar.known sofar.As the plan isexpanded,

the agentcompares the expandingplan aga_st itsrecordofthe bestplan,and _pdatesthe

bestplan asnecessarytomaintaincun'entand correctinforma'don.

This model ofcommitment paintsthepictureofan agentthatsearchesthroughaspaceof

hypotheticaloperatorsand statestofindwhich operatorsitshouldadd tothe currentplan.

In traditionalpla__nlngthiswould be restrictingthe possiblepla_modificationstooperator

additions.Italsocloselyresemblesthe basicapproach of the SOAR &rchitecture[Lairdet

_., 1987],which performsautomatic sttbgoa_ingto Moose which of a set ofoperatorsto

executeinitscurrents_ate,with"_hesearchcontinuingfrom that state.Our framework can

commit tomultiplestepsa_a time,which resemblesSOAR with itschunking mechanism.

3.2.2 Planning at multiple levels of abstraction

Although the plm_ningtechniquesdescribedabove form an interestingmethod in their

own rithT, such a method is, as are all single-level planning methods, too inefficient _o

solve complex problems in any reuonable amount of time. Certainly we cannot expect the

techniquesto provideby r,hemselvesa read-timeplmaner _ltat willbe ofmuch use,since

they facea daunting sear_ spa_eboth forinitialplanning and forrecoveringfrom errors

or unexpected cha_geainthe world.To allowthe plannerto operatee@ec_ivelyin the real

world, we add in abstraction to help both in b_dding _he plan and in revising the plan u

more l_ormation isreceived.Inthissectionwe concentrateon the initial plan cons_ruct]on.

We diJculsreplanningin Section3.3.

Propagating world information

Information about the outside world is received by sensors and posted in the current world

at the appropriLte h:ve] of abstraction, Sensors are normal), associated with the lowest,

executable level of abstr_r, ion, b_t there is no pro}dbition in our model q_dnst sensors at

arbitr_.ry levels of abstraction.

The ,ensor information ia posted In the current world on the "occurred" timeli_e. This



36 CHAPTER 3. ABSTRACTIO.N PLANA'LNG 1IVP_AL TIME

intermediate

goals

goals 1

Transferofinfonnationbetween levelsofabstraction.

Figure 3.7: Transfer of information between _djacent levels of abst,Taction.

information is checked _ga_nst the current expectations (we discuss in te_ion 3.3 how _hls

affect,s the planning process), and it is also propagated to higher levels of abstraction to

ensure that shelf model of the world is correct end that their plans are useful for the

currently known state of she world (see Figure 3.7).

Reca]] from Section 3.1 that t_fo_matlon is propagated across levels of abstraction using

abstra_tio_ rules, whi_ re._mble operators. A8 iafotm_tio_ arrives about one lever of

abstraction, the abstraction rules are used to tramsform _be informatlon amd post it in the

current state of tile next higher level of abstraction.

Prop-,sating initial goal information

The i_tial goa_s may be specified at multiple _e_'ols of ab_re, ct|on. Since the goa2s are

part of the state, represented as intended intervals, they can be treated similarly to worid

information, As with world Information, the information about the inittal goals ts prop.

agsted throughout the abstraction level, to ens.re that the abstr_t plans w_Ube solving

the appropriate (_]beit more abstract) problem. The process to abslract the Inlt;l_l goals

is preclse_y the same as for propa_zt]ng world infonma_o,_: abstraction rules transform the
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Figure 3.8: Operator effects in an absersc¢ plan are propagated to create intermedi,_te goals
at the next lower level of abstraction.

goals and post them in bdgher leve/s of abstraction, from where they are propagated further.

Propagating intermediate goal information

When an operator is added to the best plan a_ troy but the lowest level of abstraction, the

operator and its effects are added to L hypothetical sta_e at that level. Since the system has.

no way to directly execute the oper_LtOr--_mHkethe execs,table level, where actions may be

sent to the e_ectors--it must fi_re out how to actuary achieve those effects. So the effects

are propagated ¢o the next lmver level of abstraction u goals to be a_hteved (see Figure

3.8). This type of goal propagation can also be found in Knobloc_'s thesis [Knoblock, 1991].

One camview thil technique M posting generic actions which are then ins, an, inked by t_e

lower levels. For instance, a higher level Lotion might be to travel from one point to another,

leaving it for the lower level to choose the most appropriate form of tr_sportation.

U_ke o:her approaches, we mbke no as_umption_ _bou_ a strict ordering among the
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Figure 3.9: Operators may produce effects that axe "out of order" with respect to the order

of plan construction. The resulting intermediate goals at the lower levels of abstraction will
be similarly ordered.

intermediate goals inherited from more abstra_:t pla_rdng. Nor do we assume goal indepen-

dence, which many people who assume strict orderLug also usume. Pot i_t_uce, Knoblock:s

results r_t on his assumption of goal independence, which even with strict goal ordering

does nm hold for even simple classic problems such as Sussman's anomaly or register swap-

ping.

If the agent were to a_sume goal |ndependence, it could treat goals as "milestones" to

be achieved one at a _izhe_ ignoring all otl_er goals. This is not reasonable |n the case of

interacting goals, so for complex, real-world problems this is not a feasible approach.

Even the assumption of a total order of goals is unreasonable when working with "_em-

poral information. For instance, at the abstract level one operator may have effects over

the time interval [0,101, which triggers another operator chat produces effects over the time

interval I5,15]. When these goals are propagated to the next more specific level, the inter-

mediate goals overlap.

Furthermore, since r,ets of independent operators may caxry the search from one state

_o another, _here ts not even a guarantee tha_ steps a_ the abscract level will have any

particular temporal relation to earlier steps. For instaace, an agent may have a set of two

operators, oL producing effects over the time interval [0,10] and o2 producing effects over

the ¢ime interval [30,40] (see Figure 3.9). Suppose a_ operator oa iJ triggered by the effect_

of ol and produce8 effects over the range [15,20i. Operator o_ is "after" ol and o2 ]n _he

plan-construction process, bug its eft'eels actually appeax before those of o_. 5o when we

propagate these effects to a lower level of abstraction, the temporal order of the intermediate

goals will not mirror the order of the plan-construction process.

So what can a planning agent do wt_h thi_ potential jumble of goals? It ta_e, them w a

I I
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co,unction of goals and gauges its progress in relation to the entire conjur_ction. This can be

performed more e_cJently than it might seem at ]_rs_ s]ance.._,U of the goals are intervals on

the timeline. If interv_s are i_de×ed by parameter a.,_d time, then w expectations are _clded

to the timeline, they can be checked against those goal in:ervals that share the parameter

and overlap in time. This restricted check is su_icient for deterzr_hting goa_ satisfaction, and

a_ operation local to a eman portion of the T.otal set of timeline intervals. In this way.

updating of goal ac_evement can be computed ]ocaUy.

Recovm7 t_om aubgoal faL1ure

When an intermediate goal is found to be unachievable, the agent should propagate infor-

mation about that back up to the level from which the goal was derived. In particular, a

failed interme_ate goal in our approach corresponds to the possible failure of an operator's

expected effect at the more abstract level. The abstract operator's expected effect is over-

ridden by the information from the specific level. Any operators, and more sene_ally any

parts of the plan, that depend on that effect wlI/have to be modified or replaced. The basic

approach here is similar to how the agent rep]ans given sensor rezdtng mismatrhes--the

det_s of that and the replanning process appear in Section 3.3.

l_'ote then that a goal failure does not aecessi:ate replannh_g at the more abstract level

If, despite this failure, _he abstract plan is still determined _o be the best available, then

the abstract plan remains untouched. I_ this ca_, the intermediate goal at the lower level

is removed, and the pla_.ne_ continues w]tllout that goal. Depending on the criticality of

the goal to the overall plan, the agent may decide either to ignore the goal or to replan to

compensate for its failure. For example, if the agent decides at 1:he abstract kvel to build a

tower on a bus of metal poles, but finds _hat it has no spare metal poles but instead hu a

b_ a_ready made of wooden poles, then it may ignore the "metal" goal and continue with

its plan. bu_ddiag the rest of the tower on the wooden base.
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Figure _.10: Plus may be expanded at any of multiple levels of abstr&ction.

Control over multiple levels of abstraction

The _gent inrerleave_ the incremental expansion of i_s pie= zt multiple kvels of abetr&ctlon.

Because of this, the agent is faced with the tank of decidin$ how much planning to perform

at each level at any given time (see Flip,re 3.10). If all the _sent's energy were applied to the

most abstract level, ]t would mimic the behavior of systems such u ABSTEIPS, expand|a S

e_ch level completely before con'_1n_g on to the nex_ level of abstr_ion. The problem

with this approach is that it requires that the optlms] plan is found at every, non-executable

level before the fit_t step is planned at the executable level. This is unzessonab]e in a real-

_ime environment, where the agent may not have the Tesources to fed she optimal plan at

any level of abstraction, much less a_most every level, before it begins to act.

Suppose instead that the agen_ took the opposite appro_h, and planned a minimal

amount at each abstraction level, perhaps just enough to stay ahead of the specific level's

pJan. This ldso is likely to be suboptimal The abstr_t plan hua high chics of error,

since it is o_]y mJntm_y expanded and might chm_ge substantially when expanded. Also, if

the intermediate goals interact, the agent will discover the interac¢lcns only when the goals

are all pre_nt. If the goals are added after the _ent has plmmed • slsnificant amount of

the specific pimp, she specific pl_'l might well prove less opttr_s] than if the complete se: of

_ " I I II I I I [1[I



interacting goals were available w_le the _q_ent built the specific plan.

The appropriate plan-expansion rtr_tegy fails somewhere L_ between _hese two extremes.

The general problem of formulating an ideal strategy depends on m_ny characteristics of

the problem, such a_ the b_anching factor of the plan, the variability of the world, and the

depth of the plau, so thee is no universally optimal _pproach. I_ Chapter 5 we describe

how to find strategies that are optima] for some importan_ aspects of the problem. Here we

discuss the tradeoiTs inherent in the _o|¢e of a strate_'.

Expanding a plan at any level o_"abstraction is a search process, and as such: may be

exp_sive. Abstra_:t pleas often do not become as deep as specific plans, but they still carry

a fair overhead. On the other hand, abstrac_ plans provide intermediate goals to the more

specific plans, so they reduce the search at that more specific level. If an abstract plan Is

producing goals that do not reduce the specific search more than the cost of the abstract

search (for instance, the goals are _oo far ]n the future, or they are too vague to Unit the

specific possibilities signtflcantlyl, then it is a net loss in search time to expand the abstrac_

level instead of the specific plan.

Emphasizing one of tee points mentioned above, we see that the amount of aid an

abstract plan gives to a specific plan depends on the usefulness of its goal_. 5o the approach

needs _o be sensitive to the abmty of_he goals generated by the abstract plan to reduce the

specific searS. If the abstract plan is expanc_ed too far, then its goals are Likely _ be less

useful to the specific plan.

A longe_ plan is more llkely to approximate the optimal plan for a givsn level of ab-

stractton. In particular, since abstract plans form a framework within which the specific

plLus are built, lonter abstract plans offer a more stable over_ plan. H_ 'eve_, as shown

in the e>:treme case, a _pecific plan, or at least a partial plan, must be generated _n _he

•mount of time available. In a_idition, the specific pla_ may be used to react qmckly if the

time ava_.ble is reduced dramatically and the system is forced to execute somethi_$. Thus

there is _ tradeo/T between rencttvity to changhxg resources and the stability of tl_e overall

plan.

In a s_,ilar vein, a longer abstract plan is more likel.v to glve rise to a more op_ima_
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overall ptan. The longer abstract plan is more likely 1:o be correct, and this is used as a

framework around which lower level plans are buJk. Therefore the overall plan is more

likely to be correct when more work is done at abszract levels.

If an abstract ])]an is _oo uncertain, then i_ may be worth postponing further planning

work until the agent rece|ves too,., informatio_ from the wozld that wi_ constrain the

abstract plans. Otherwise expanding the plan _ ol_'er %_udshing]y small amounts of useful

aid to the lower-level plans.

A planning agent also must not ignore the amount of time available until an action is

requJ2ed. With _ short deadline, the agent might not be assured of _indlng an execute, hie

a_tioll in time if it ignores the de_dl_ne, so _his Ll_o must be taken into a_:coun_ when

decid_g how much efort to expend at each ]eve] of abstraction. With shorter deadlines,

more relative e_or_ must be spent at the executable level than some of the other tradeo/_s

m_gh_ surest..

Control of plan execution

A_ the agen_ c_mm_ts to _e_ of its plan, the corresponding executable actions are sched_ded

foz execution. In particular, the _cfion in_er_s describe a schedule for execu'cion, and this

schedule is sent to the e_ectore. Depen_ng on the sophistic_ion of the efl'ectom, the actions

are either sent _]ong with time information when they _hould be executed, or • daemon

w_thin the a_ent re_ys them at _he appropriate time.

In the extreme z|me.pressured case, we might re_h _ dea_ne before a.,'riving _ a

single executable action. Ahhough the control strate_ should prevent zips from h&ppenin_;

in all bu_ the mo_ extreme cues, our &pproach can p_oduce a.n at:ion quickly if nece_a_.

Firn, :_emember that the _pproach always maim._ns the complete l%t of actions that i_ has

_risgered for each state. This includes the current state at the executable level. Although

the initial goal is likely _:o be of llttle use, a_ obvious Jirst cu$ would be to Jtnd zhe operator

rated ki_hest by the search control with respee_ to that goal. Bu%_iv_n _ bit more time,

we can follow the following procedure: Find the lowe_ level of abstrgction _t which a plan

exists. Propagate the etTec_s from _ha_ plan to goals as the next lower ieve/of abstraction.

i, I! II I I I
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Find the best _irst step with respect to those goals at the lower level of abstraction. _hat
i

in turn will produce a set of intermediate goal_ at a. still lower level of abstraction, and the

procedure is repeated until the executable level is reached. The rationale behind this is

that the ab_ra_t levels produce goals that are close enough to the current state ¢o provide

meaningful guidance to :he lower level plans, whik expending a m_nJmuw, of effort to supply

the $_fidance.

3.3 Replanning

An important, but oft-neglected feature of real-world domains is that the world does not

always confomt to the inter_al model that the asen: me.in_ins. The planning agent is not
D

necessarily the only age_t acting on the world, so e_'ents may occur that are unexpected by

the p]_u_er. Some of _he prec_ctions made by the planning agent may not be completely

accurate in a dynamic environment; in p_ticular, the planned _ctions might not have the

effects that the plan_Jn 8 agent has envisiorted.

To function in such aa environment, the planner must be able :o _cept unexpected

information, incorporate i_ into i_s model of _he world, and adjust its plan to conform to

this new model. Within a single level of _bstractlon, the new information may force some

operators to be removed from the plan, possibly requh-ing the plan to be revised. Opexa$ors

m_y a_so be triggered by $he additional information, adding steps a_d branches to :he plan.

The new information may _ause replanning at multiple levels of abstraction. ,

Since our approach is designed to work with partial plans at multiple levels of abstrac.

tion, replanrdng _ctua_ly uses :he s_me mech;_nism a_ planting Ln the first place. Once

the world model and plan have been adjusted to fit the new information from tile world,

partial plaas rernai_ at the various abstraction levels. They _re possibly leas complete than

they were before the informatiov arrived, bul they are still just as usable by the planning

method (see Figure 3.11).

m
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," about the \ w_et

/Y ......_ 'l:
world

Figure 3.11: Planning may be viewed u s number of processes modifying a global data
structure (the plan) and reacting to change_ in it.
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3.3.1 Replanning at a single level of abstraction

When a sensor records an event in the world, a_ interval is placed on the occurred time-

lineat the appropriatelevelof abstraction.That informationisthen propagated to the

expectedtimeline.Ifthenew informationtriggersnew operators,the operationoftheplan-

n_ is_xactlyas describedin Section3.2.1above:the possiblerange ofexecutiontimes is

computed forthe operators,and the}"are added, sin_yand incombinationwith any other

operatorsapplicablein thatstate,to the space ofoperatorsthat the plannerissearching.

For further information about the process of t_ggenng operators and adding ¢hem to the

plan, see Section 3.2.1.

If, however, the z).ew information contra_l_cts information that u existing operator relies

on, then the operator isrevised. 'l'heplanner maintainsdependency informationabout

which intervalsare used to triggereae.hoperator,so wlttnan interval]soverridden,izis

a simplematter to fredthe set ofai_'ectedoperators.Ifthe new informationonly partly

obviatessome conditionof the operator,then the rangeofpossibleexecutiontime ranges

isnarrowed to match the remaining conditionthatdoes match, ufingtliesame procedure

as operator triggering to determine the new range of posslble execution times.

Once an operator's execution rime range has been changed, the time range of the effects

will also chaage. Note that this is a change to a set of expected intervals. So the same

procedure that we just described, revising operators based on changes to expected intervals,

now applies to th'_ new ir.tervtls. Tids procedure wRl iteratively update the plan and

propagate the changes throughout the afTeczed portion of the plan.

The agent is le_t with the poztion of the plan that is applicable i- the new s_ate of the

world, a_ the agent now knows i_. Since the basic planning process takes a partial plan u

input and expands it, zhis new plan is suitable input to the planning process. So the agent

can continue exp_nding the plan from this new state, Basically, we can view the agent as

reactingto changesin the plan. Itreactsin the same way _o itsown changesto the plan

and changes imposed by the world.
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3.3.2 Replanning at multiple levels of abstraction

When a plan is being constracted at multiple levels of abstraction, then unexpected changes

in the world may affect more than just the particular level of abstraction to which they are

reported by the sensors. So the additiona2 problem presents itself of finding the affected

plans at all levels of abstraction. Here we can adopt an appsoach dating back to Noxs

[5acerdoti: 1977], in which she change i_ abstracted up through the abstraction hierarchy

until the abstraction transformation produces data that do not change the world at some

level of abstraction.

This behavior of abstracting the change up through the levels of abstraction actually falls

out of our existing method without any additional mechanism. We describe in Section 3.2.2

bow _tste information is propagated up through the levels of abstraction. And we describe

in Section 3.3.1 how world chsnses are represented as nee," state information. Therefore

the changes are propagated automatically by ¢he mechanisms for recording changes _ud

propagating state information.

Moreover, the desired behavior at each level of abstraction also fans out autom_.tically

from the single-level replsnning as described in Section 3.3.1. At eac]_ level, the plan is

revised to match the new information.

_'ote that t_s may have effects at more _han a single level. As the plans are revised,

the intermediate goals propagated to lower levels of abstraction may change. So u the

changes propagate throughout the layers of the plan, the [ntermadi&te go_ ma,v change

• 1_o, which may change the idea of the best plan a.t a level TIlat may in turn change the

goa_s propagated to the, next lower level, and so forth. But the importan_ poin_ o_"an of

tills 1._that this behavio:r is all covered by the existing planning mecbanLsm_.'

3.4 Summary

We. have described an approach to constructing partial plans simuJtaneously at multiple Icy.

els of ab_tra_tion. These plans are built based on the planer's state of information about

the past, present, and future. The plans are expanded incrementally aus long a._ the planner

IIJ I ...... I
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has time available. In addition, the planner remains sensitive _o the dynamic environment,

revising the plan _o march new information as it arrives. This process of rephnning tits

within zhe model of building the plan initially., so tha_ plsnn/n$ and rephnning _e in_e-

grated together into a seamless process that incremen_y mold._the plan 3nto a increasingly

optimal form.



Chapter 4

Implementation

The planning approzr._ in this thesis has been implicated within th_ BB] blackboard

problem-|'olving aTchitecture [Hayes-Roth, 1985]. We will discuss the aspects of the architec-

_ure that are relevant to the planning system, and then discuss de_a_lsof the ]mplemex_tation

as they auSmen_ or differ from the method as discussed in Chapter 3.

4.1 BB1

BB1 is a bla_kboaTd-based problem-solving architecture. For a complete treatment of BB1,

see or_eof [Hayes-Eoth, 1985: Hayes-Roth .at el., 1987]. Here we give an ove_,tew of the

architecture and then present the de_ils that are particularly relent for the work in this

thesis.

BB1 is • reasoning architecture that supports opportunistic reasoning. The blackboard

is a slobs] data s_ructure that serves M a communication medium for multlple reason-

ing components. The rea_onLag components are implemented as set of knowledge _ouvc:e,

which _r,; _tiv_ted by _anges in the contents of the blackboard and execute to produce

more chan_es. Oppor_ume_ic reu_onin$ l_ enabltd by this dat_-driven kuow]ed_e.sou_ce

activation--when something chanKes on the blackboard, a knowledte source may be acti-

vated au_omaticlLly. Contra_t this with a typical p|'ogrammin$ l_ngu_e, where procedure

¢sUe ate made in sccordanc,: with a fixed control structure, rather tha_ ab a direct response

48
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to changes in the data. Th/_ much of BBI dose_¢ resembles production systems _s see-, in

[Laird et eL, 1987; b;i/ssot_, 1992].

An a_id/tional feature of BB1 is its explicit and declarative representatio_ of control.

Many productlon-style systems zetain a f_xed control structure, allowing oppor_utJstic rea-

sonin 8 within this fixed control. But BB1 has a control p]a.n that is declarative and rood.

ifiable by reasoning actions. I_ particular, a knowledge source r_ay have as its resu]t.s a

¢haa-_gein the overal] control of the system.

4,1.1 The concept hierarchy

All in,_ormation in BB1 is stored a= part of • concept hierarchy, which is similar to a semantic

network or conceptual graph [town, 1984]. Objects are part of a type hierarchy, but _so

have named ]inks to other objects, expressing relationships among them. All objects in the

BBI system, including knowledge sources, control objects, and reasoning data structures,

are objects in the hi_archy e.nd m.ay be inspected and reasoned about by the system.

4,1.2 The basic architecture

The basic re_onlng cycle of BBI is shown in -Figure 4.1. W'e sl;srt at the bottom, with

events that record changes in the b|ackboard. The agenda manger check_ each available

knowledge source against each event, and all triggered knowledge source iastantiations

(KSARs) are plac_ on the agtnd_ (along with the unexecuted KSA_ from previous cycle_).

The schedu/er then uses the information from the control plan to choose the best KSAR

to execute. The executor ,executes the KSAR, and its actions create event=; that start the

¢ych over _aln. The reasoning continues as long as there are KtAI_ to be executed.

The con,,rol plan provide= _obal coherence to the reasoning process by favoring KSAIts

that are relevant for the go_ls of the reasoning system. Given appropriate control knowledge,

the system may notice important KSAI_ from other reasoning r_odules and modify the

control to execute the new KSARs and follow that line of rea=orLing.

The architecture is designed to support multiple reasoning components ¢oncurrendF

The iI_formstion from each component appears on the blac_boLrd and may be used b), other
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Figure 4.1: The b_ic BB1 reuou.ing cycle.

re,uordng components. The planner we cle6cribe _u tl_ thesis may be considered one of many

reasoning components within a larger reasoning agent. For Instance, the basic persistence

module could tie supplanted by a component that follows a more knowledge-based approach

to prediction. In a_:idJtion, these o_her components may modify the blackboard contents and

consequently aifect the plan much in the way tha_ ta ex_emtI environment mif, ht. When

we discuss the interactions of_he planner with the external environ.ment, we also include in

our v|ew any other reasoning modules that might be a_fecting _he plan, or in o:l_er words,

anything external to the planner itself.

4.1.8 Interaction with the environment

BB1 has bee_ extended to iatera_:t with an external environment. In Figure 4.2, the b_sic

control structure hM been augmented wish a communication channel to _nsors _ud eifec-

tors. The basic cycle Is unch_ged, except tha_ now external events may be generar, ed by

sensors and used co tfigter reasoning operations, sad the execution of KSAlts may gener-

ate external actions in the eifectors. The externaJ communication with the outside wor]d

• I I
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Environment

Figure 4.2: The BB1 cycle _u_ensed "cocommunicate whh an external environment.
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is asynchronous and toni:rolled by the reasoning system (BB1) as well as by the commuz_i-

cation cha.'lnel to avoid overwhelming the system with data IWashin_on and Hayes-l_oth,

1989].

The da_a _hat do arrive at the system can trigger KSAP_., so that with this a_ded

communication channel, reasoning can be opportm_lsti¢ with respect to the exte_za] an-

vironment. The interaction of the environment with in_ern_ rea_on_g is critical to our

approach, both in the initial planning and in chan_ the plan in ways thaz require xeplan-

ning.

4.1.4 BB1 languages

The buic BB1 knowledge-so_ce language hae been augmente_, wi_h a higher-lev_ descrip.

tion language that is designed to enhance understandability and also internal control of the

ceasoning process. Instea_l of arbltra_ lisp-syntax knowledge sources, _he conditions and

actions of knowledge sources are expressed in a simple template grammar, where the objects

in the _ammar are _hemselves part of the concept hierarchy. This way'a knowledge source

can produce a specific effect in the blackboard that will tril_ger a knowledge source with a

more general condition. In planning, for instance, changing _he start bound of an operato_

may _ri_er a knowledge source that looks for any change to an opera,or.

We have extended the basic BB1 languages to implement our method, allov,'ing multiple

language actions in a singie knowledge source, and allowing hierarchical implementation of

an action (wheri a single language action may be executed by exeeu_i:_ many subsidiary lan-

gua_e actions). This was necessary to implement the sometimes compl_.,_ plan-mo_£ca_ion

operators.

4.2 Timeline

The temporal representation has been realized as the Timellne component. The Time_Jne

component is a program of 18000 ]_nes of Common Lisp and BB1 code. The Timellne

component_ b_¢ _go_thms and data structures reside in Ltsp for e_clency pu_oses.

, i I l li I I I I I I II I



The Tim_ne mah_tains and updates s parcel model in BBI for reasoning purposes. This

separation allows it to perform its innermost data struct,_re handling at least an order of

magnltude faster than BB1 operasions. The results of the Lisp manipulations m'e the_

propagated to BB1 once they have been optimized to minimize the BB1 operations. The

BB1 operations cause chaates in the re_oning that the system performs, so in this way we

can use the power of BB1 while maintaining _he speed of • standard progrsmmin 8 langu_e.

4.2.1 Data strucl;urels

The approach as described in Chapter 3 represents world informaSion using the basic mlJ_

of a_ interval, w_cl_ represents s proposlsion over a time |nservsl. The implementation

breaks t_s down further, to s_b_inservids, interval segments, a_d time poinss.

Underneath everything lies a _etwork of t_'ne points. This network maintains a strictly.

orde_'ed timellne of time points for each vazlable in the system. This loses the complete

gener_ty shat we need to express the general constraints of Section 3.1.1, bus it l_mtts she

computational complexity of ressonJn_ about _ime points. In retrospect, she difference in

speed between Lisp and BB1 would su_es_ shat this computasionaJ complexity is probably

acceptable, so we mi_t prefer a richer temporal _presentation.

The time points serve a_ endpoinss of the intervals that represent information in the

time.line. The intervals _hemselves a_e subdivided into smaller pieces for reasoning purposes.

If mulSiple intervals intenect a_d disa_ee over _ Sime lnterval_ the system has to choose a

single interval So be _rae over that time inter'_l for the sake o{ consistency. The interval

that is chosen to be true by She system is calted act._ve _thin th_ time i_terval. In Figure

4.3, if C overrides B, which avertS.des A, _hen _n the time interval [10,15], A and B intersect,

and B is the active lnte_',_l.

If the currently _ctive interval is removed from the timel_ne, one of the other intervals

will become active over the _ime interval. This leads to a s¢ack-like behavior, where the

topmost in the sl.a_ is active within the time interval.. To m_int_in chat behavior, She

time_ine is _ubdi,_ided into inter_ _eg_ents. ,_.n i_te_'al seg_:nent is a time i_terval over

which a _et of interval,; intersects. In Figure 4.3, the ttme interval [0,10_ is an interval

-- i
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Figure 4.3: The representa,lon of interva_ in the implementation. Inter_s are subdivided

into interval segments and sub-J_tervals. In '_his example, ]nterva_ C overrides B, which
overrides A.

segment, as are [10,15], [15,25], etc. Each interval seBment mai_taln_ s stack of intervals

that intersect over the interv_ se_ent. Adjar.ent interval sel_nents h_ve different sets of

intervals: in other words, an interval segment is che maxima] time |nterval included in the

same set of interve.Ls.

The planner and other reasoning components focus on the _t]ve interval for e_ch interval

segment. For reasoning purposes, _he set of in_tive intervals is unin_ere0_ing. Therefore

_he timeline maintains a set of 8_5-(nterrole, where each sub-inter_ is a time interval

that contains • set o_"interval segments with the same active interval. In Figure 4.3, the

time l_terv_ [0,15] is • sub-interval over which B is active, and it contains zhe inzerval

a_unents [0,10] and [10,15]. Adjacent sub-intervals have different active interv_s; that |s,

• sub-interval is the maximal ¢|me interval over which am interval is active.

Note that there is • m_ny-,o-one mapping from interv&] sesments to sub-interv_s. Since

a sub-lnter%_l i_ _ m_im&i contiguous set of Interval segments with the same active interval,

each interval segment w|ll belong to one sub-interval.

Note al_o that the ; is _ many.to-one mapping from sub-!ntervals to lnterval_. An

II I I I III
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i:_terva] m_y be active over multiple time interv_ because of "hole_" caused by other

intervalstha_ axe activewithinthe tSme intervalsof the holes.

As inter_Ison the blackboardare added, modified,and deleted,the underlyingdata

s:ructuresare updated autom_ticallyto rejecttheirchanges. BBI data s_ruc_uresare

maintained _or sub-inte_ls and intervals, so the reuoning systen_ m_y react to cha_ges to

either o_ those levels of des_ption.

4.2.2 BB1 blackboard structures

The BB1 data structuresare maintained inparallelwith the Lisp data structures.As the

Lisp data s_ructures are updated, models of the BB1 objects are updated simultaneously:

Once all of _he modiflc_.tions have been made to the _,isp structures, the BB1 objec_ _ddi-

riot, modi_c.Ltions, and deletions are propa_wd to the BB1 blackboard. This is prlma_ily

an efficiency consideration, bu_ there are also other xe_sons as well. Consider splb:ting

sub-inter_qd into two eub-intervals, where one will point to a new interval. Using normal

programming techniques, the sub-intervaJ will be duplicated, and then the pointers _'rom

the second sub-intervM wil_ be changed. If _he system were to propagate the change._ as

they occurred, there would be a period where the blackboard information w_ inconsis-

tent. By propa_a_htg the chan_es as a whole, _he system can m_ke a single addition of a

now-consis_en_objectto the blackboard.

E,censome of :he ei_clencygains willbe substantiM. Consider the efkc_ of adding

a_ninterval, then deleting it. Perhaps that interv_ _1 be deemed important enough to

completely_ange the controlplan o_ the BBI system. Suppose that the _n_ervalwas

merelyan intexmed_atestepin some otherintervalopera¢ion.Then by etoringthe results

ofthe d_a structuremanipulations,the BBI objectwould end up never bein_ createdin

the firs_place.By avoidingthisobjectcreation,the system can alsoavoidthe po_entieily

expensiveand nseiesscha£gestoitsplan thatthe objec_would ca._se.
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4.2.8 Hypothetical worlds

As described in Ch_p_er 3, hypothetical worlds are represented as dehas from theirsup-

porting worlds. Therefore, operations that Ioo): up information withln hypothetical worlds

must return information not only about the inter_ls that are found, but also the time in-

ter_ls within which these intervals are used in the hypothetical world (since an interval in

the s_pporting world may be masked by an interval in the hypothetical world). The lookup

routines actua31y return a set of sub-interval objects (since intervals ma_ not be active over

a sin_e, contiguous time interval, but sub-intervals will _e). These sub-intervals are paired

with time-intervals over which they contribute to the lookup.

The relations among worlds, world-founders, time_nes, and intervals are all represented

in the Lisp data structures and mJ:rored in :he BB1 object necwork. This way reasoning

may be performed about the BB1 objects and links, while retaining the efficiency of working

at the Lisp level for internal $imeline processing.

4.3 Planning

Planning is much as described in Chapter 3. The planning component comprises an addi-

tional 11000 lines of Common Lisp and BB1 code on _op of the Tim_ne code. Iutervals

added to the t|meUne triuer planning knowledge sources. These knowledge sources are in-

st_ntiated as KSARs for particular operators and triggerin$ intervals. The KSAI_' actions

will add those opera, ors to the plan.

The parameters that appear in an operator's conditions are also objects in the BB1

object network. Links are strung horn theoperator (which is also a BBI object) to the

parameter. As an interval is added to the timel_ne, _he interval's parameter is checked

to see whether any operators could be triggered by the new interval. That condition will

trigger the knowledge source that does the actual planning work of triggering the planning

operator, If _he planning operator's conditions are satisfied by the new interval and the

other information on the timellne, an operator poesibiHt Fobject is added, which records the

variable bindings generated b)' the operator triuering and the time Intervals over wIlich
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the opera_or could be executed.

As muhiple operator posslbi/ities appear for a world, they will trigger a knowledge

so_rce for combhda 8 the possibilities into operator sets. The combination KSARs then

check for resource and precondition-actlon conflicts as described in Chapte_ 3. Because of

the simpler temporal representation, the resulting operv,_or combinations may end up as

mulzip'te worlds, each of which represents one part of the complex constraints that resolve

the con_ct. For i_stance, given a constraint that = _ T/for two time points z and _/, two

worldswillbe created,one inwhich z > p,and one.in which z < _.

4.4 Replanning

Replaaning, as describe4 in Chapter 3, is _ naturai extension of our planning method.

Indeed,the veryeventsthatc_usenew planningoperatorstobe added t.otheplan may also

causethe lossofinformationon wld_ a plan stepdepends. Inparticular,asoperatorsaxe

aAded _o the plan,linksareformed from _he planstepstothe timelineintervalson wkich

they depend. As these intervals are modified or deleted, the plan steps are rechecked and

revisedasnecessaryto maintain consistencywith_he new information.

Ifan intervalchangesenough that an operatorisno longezapplicablein the world in

which itappears,thLtoperatorisremoved from the plan,and itsworld _d allworkLstha_

depend on i$areremoved aswell.The planningmethod thenexpands the newly-shnmken

plan.

The same internalmay alsot;riggernew operatorsthat were not _ppllcablebefore,or

expand theirpotentialexecutioninterval.This alsochangesthe possiblepla_ expansions

availabletothe planneL which continues on from that situation.
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Analytical results

We have investigated the effects of abstraction on planning searchanalytically. Koff [Korf,

1987i shows chat abrcraction can reduce an exponential search problem to _near in a ma_:ro-

operator network. The macro-operator model differs significantly from our own. The sta,tes

themselves are no more abstract at higher levels of abstraction; rather, an abstract space

contains a subset of the states at lower levels of abstraction. The only sis,tea that can be

abstracted ate those states shared with the _¢xt more abstract level, so there is a search

witch a level of abstraction to find a state that can be abstracted. And the abstract search

completely obviates the need _or lower.level search.

Kuoblock [Knoblock, 1991] uses a more _r_ditiona] planning search space. He shows that

abstraction can reduce a,t exponential planning se_ch to linear wlth appropriate abstrac-

tions, but that reset only holds under a set of strong assumptions. We take a different and

weaker set of s_sumptions that are more reasonable for a temporally.represented domain.

We cannot a_hieve the exponentlal-to-lJnear gains under our model, but we can show the

following:

s how much abstxaetiou is appropriate when the environment may chauge;

• the optimal amount of abstraction for any given problem;

, the change in the optimal amount of abstraction as the plan lengthens,

_8

• - Ill ! I
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First we review _he assumptions tha_ underlie the aualysis and discuss how _he planning

process opera'ces under these assumptions. Then we address each of the three points above.

5.1 Basic assumptions

We assume b_nd search at each level of abstraction, with a constant branching factor b

across all levels. As described in Chapter 3, the states of at, abstract search a_e _r_lated

into goals for the next more specific level of search. The reason for this is that the agent

is t_-ing to implement the abstract, plan at the lower level by ac._eving each of _he states

that the _bs¢_ct plan reaches.

Our approach to planrdng only enforces dependencies among subsequen_ steps in a

pla_ a_ a Wen level of abstraction. If there is a sequence of sta_es so, _, s_ in the plan,

where a set of opera_ors Ox = {on, o_, ...o1_} produces si from so, and a set of operators

O2 = {o21, o22,..., o2,} produces s2 from _1, then ea_ o_i depends cn the results of some

o1_. _a_ such o2; does no_ have to strictly _oUow the effects of the o2/, but may overlap.

Hence the effects of an opere_tor o_ may overlap with the e.q'ects o_ the opera, or oL_ on

which it depends, and may be completely temporally independent of a_ other operators in

the set O_. When these steps are propa_sr, ed to become goals at a lower level of abstraction,

subsequen_ intermediate goals may overlap temPor_v or even be "out of sequence."

Because of this lack of strict ordering among intermediate goals, the search a_ the specific

level c_not use the goals as "milestones _ in the sense of [Knoblock, 19911. Kaoblock

assumes that the seascb can achieve one intermediate goa| completely independently from

all previous _d subsequen_ goals. This is a problem even without our l_:k of s_rict temporal

sequence (for instance, the Sussma_ a_oma]y or register swapping are examples where _his

assumption does ,_ot hold), but in our domain it is completely untenable.

In_tead o_ viewing the set of intermediate goals m milestones, we see the goals, _aken as

a set, as constraining the _srch at the lower hvel of abstraction. ¢,% express this by t_king

the p_obabilit.v of an arbitrary goal ruling out an a_bitrary state (i.e., If _,he s.vstera reaches

the state, the goal wiLl never be achieved) as p. For g goals, the probability that _uy single
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state is not ruled out by a goal is (1 - p)#. For a search of branching factor b, the fringe a_

depth i willbe b(l-p)', _he frinsea_depth 2 willbe ((b(l-p)O)b)(1_p)9 = (b(l-p_)2

and ]ngeneralthe fringeat depth iwillbe (b(l_p)O/. Therefore,where a completelyblind

seaxchofbranchingfactorb and searchdepth d expands

b_÷* - 1

nodes, adding g goals will reduce the search space to

(b(1- - 1
b(1- - I

nodes.

Given _.levelsofabstraction,where levelI isthe mos_ specificsad leveln isthe most

abstrac_, and plans expanded to depth d_ at each level i, we assume that there is some k > 1

such that dl = d2?c ffi ... ffi d_k _-2. That is, for any _wo adjacen_ levels of abstraction,

the r_tioof_heirpla_ lengthsisk. Note thatforany specificdomain therewould alsobe

an upper boun_ on k correspondingto the ratioof stepsat one levelto stepsat the next

more abstrac_ level; otherwise tile abstract search could lag behind the specific search. Our

analyses are valid with or without this upper bound.

When an abstract search propagates a goal to a specific level, the existiDg search tree at

the specific level is _.rst revieM uslag the new goal, then extended from the new (smMler)

fringe.This incurssome overheadforrevisingthe existingsearchtree,but remember ths_

the fringeof& fullsearchtreeisofthesame orderasthe e_tiresearch_ree,so_hisoverhead

isbalancedby the savingsin ex_endingthe search.Sincethe new sea_chwillbe from the

smailerfringe, the.savingswillbe at least _ _ zm order as the revisionwork.

5.2 Abstraction in a changing environment

The problem we address in this section is how much ibstraction is desirable when the

world can change. We assume a blind search to Iome depth d at the executable level.

Given difl_erem-abstractiondepths and dliferen_probabilitiesof world changes _fectin_
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the a.b_racdon levels, we show how much work is lost. We no;maize across the different

problem situations by analyzing the work lost as a percezttage of the total work.

A blindsearchofbra_cJtingfactorb and searchdepth d expands

b#+_ - I

"VYY"

nodes.Recallthatwe assume thatgivenn abstractionlevels,forn > I,where leveli isthe

most specific,leveln is_he most abstract,and the plansareexpanded $o depthsdx,...,d_:

dl : d21r : ... : d_k _-1 for some k.

We de_ue wi = _ to be _he amount of work done at level i.

Given a changein the externalenvironmenL we denote by pithe probabilitythat the

cha_ge willaffectleveli,causingit_obe replaRned.We assume that I > p_ > P2 > ...>

p_ > O,which indicatesthat more abstractplans ate more immune to noisyor changin$

data. We a_qme stfi¢_ inequality, discardi_ the cue p_ = P2 = ... = P_, since in that case

we csn derivethatthepercentageofwork lostisconstant(namelyPlfor&ny i)independent

ofa_y otherfa_or. The casewhere thep_sareequalnot only'makes the analysisunrevealing

interms of how much _bstractionisappropriate,but itisalso,we believe,an unrealistic

assumption.

To compute the amount of work losL first we note that when level k is affected by a

world change, all levek < ?_wm _lso need to be replanned. So the absolute amount of work

expected to be redone forn levelsof ab,_r_tloncan be representedby the valueof W(n)

for the renewing recurrence relation:

w(i) = v,Ei., + (i-p,)w(i- 1),fori >i
W(_) = Pt_

_t
If we define _i ffi Pi _#=i+,(1 - p_)for i < n _d On ffi p.. we cex_ restate W(_,) i_ the form:

±,w(,,) =

The totalamount of work done is:
ft

ram|
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Hence the percentage of work lost is the ratio of the two, or:

To determine how d3tferent amounts of abstract search effect the amoun_ of work lost,

we observe the result of varying k. the ratio of search depths between adjacent levels of

abstr_tion. In particular, consider taking k and k', where k > k'. Consider the cue where

the total amount of work done in the two cases is equal, so _hat

igl j=l

In general, we z'lU. use O' zo refer to the value of 0 wizen using _' as the ratio between levels

of ab, tra_rion.

Thus in compar/ng the percentage o_ work lost, we only need to compare W(n) to W'(n).

In particular, we will determine the sign of W(n) - W'(n).

Note that

i

• fl

We define c_ = ]_'=, _/a_d restate the formula above a_

w(.) ffi
is1

Similarly for the case where the ratio i._ k', we define

r,

w'(,,)=E '&'

t

Now recall that dz > ... > d, aan_d_ > ... > d,_. From this i_ follows _hat _'_ > ... > u_,
I a s s

and t_'1 > ... > w,,. Furthermore, since k > k, it follows that _Jl > wl and t_',_ < w_.

Therefore, there exists a value I such that _i > _. 1 _< _ _<i and w, < wi, l < i _< n.

Also observe tha_ 1 > c_ > ... > c_ > O, which follows from the definition of the c,s.
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We are t_/_ng to determine the sign of W'(_ - W'(r_):

t t

I I

= q(_'l - _'1)+ ...+c.(_- _.)
r

t J

> c_[(w,- w;) +.. + (_t - _i)i-

ro

> c_!_?.__'_- _i"-_ _i = 0

Therefore, whe_ I; > k', W(n) > W'(n). In other words, a smaller amount of abstraction

leads to a gre_ter amount of lost work. We can derive from this resuh _hat in a cha_ing

environment, _.6mg more _stra_ work is better, because less v:ozkneeds to be redone.

5.3 The optimal amount of abstraction

The next problem we will _ddress is finding the optima] amo_nt of abstract work to do for a

given p_oblem situ_,tion. Given a partia_ly.erpanded plan _odepth dz a_ the executabh hvd,

we would like :o know how much work to do ateach level of abstraction to extend the plan

az steps further. In pazticu_x, give_ the assumption stated e_rfiextha$ the searchdepths

are related by the rela.tion dz = d_k = ... ffi d.k.-Z _d similar|y sz = s_k = ... = s_k_-z,

we would like _o know _he value of k that ZzLimm_zest]_e wor]< to extend the seaxc_.

The v_r_ables involved in the equation wLUbe:

n: the number of levels of abstraction,

d: (= dz)thenumberofstepssofara_sheexecutablelevel.

a:(= _) thenumber ofstepstoextendtheplan.

p: _he probability that a goal rules out a possible step tn the plan,

b: the branching factor at each level of _bstraction.
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The model of sear_ we use is that the plan is extended in the follo_/ng order:

• Fork=0,...n-2:

- _n-_ steps are taken at the _ - kth level of abstraction.

- The additional s,_, states are propagated to goals at the next lower hve] of

abstraction.

- These ad_donal goals are used to narrow she existing plan space at the n-k- 1st

level--this revision of the existing plan incurs some overhead, but is qu[cldy

o_twe[ghed by the savings in extending the space.

• Finally, the plaa st level 1 is extended 52 steps.

If we denote by J_(b, d,p,_,n,{) the e.mo_nt of work necessary to revise a plan _._the

ith level of abstraction, and by W(b, d,p, a,k, n, i)the Lmount of work necessary to extend

a plan _ steps at the ith |eve] of abstraction, then we can see that the total amount of work

T(b, d,p, _, k, n) necessary to extead L plan _ steps at she executable ]eve] is:

(E_'J_a(_,d,p,_,k,n,i)+wC_,d,_,,.,k,,_,i))+
T(b,d,p:_,k,n)- W(b,d,p,_,k,n,n), fox n > 1

W(b,d,p,_,k,n,n), for .. = 1

Note alias the revldo_ work is done at all but the highest level of abstraction.

The amo_m_ o_ work necessary to revke a pla_ at _ given level of abstraction ]s merely

the size of :he .¶P.arch space so fro'. The overhead of this revision is considerable, but when

we considers that the fringe of the search space is of the same order as the entire _earch

spa_e, and that the size of the search space to extend a plan multiplies the size of _he _h_ge

by the (exponential) extension search space, then the overhead is more than compensat.ed

for by the sav_nge when extending the search space. The actual amount of work necessary

to revise the ex_sttag plan at the ith level of abstraction is the size of the search space for

the first d, steps when cons'_ralned by the extra a_+_ goads:

• I II I
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The amoun_ of work necessary to extend a plan s steps at the ith level of abstraction

differs when i < n and i = n. When _ -- n, tl_e highest level of abstraction, the search is

not narrowed by shy goals from a higher level of abstraction. At every other level, goa_s

from the next higher level of abstracdon narrow the search.

First, we define A(b,g,p,g',_') to be the amount of work necessary to extend a search

with bran¢_ng factor b, at depth d/; with probabilhy p of a goal ruXug out a step in the

plan, with the numberof goMsg', and the number of steps to extend the plan s':

...... [b(Z- p),], +_- Z
_(b,d,p,_, _) = !b(Z-p)9 ]_ [b(Z- p)/] - Z - Z

Then we can define W in terms of A:

W(b,d,P,S,k_tz, il= I A(b' _T'P' _L'_'' _zr)' fori <_

LA(b,_,p,O,_.), fori =.

We r._n expand this out completely to get a fur de£nition of T:

[_i1__)_=_,]__ +

L
.-,])+

forn> I

for r_ffi 1

We can .see from chis that for n > 1, a_ k --, oc,

r(b,,i,p,s,k,n) - b_+_b--iI + b_[_-._- 1 1] > Ti_,d,_._,_,l).

$_ce T(b, d, p, s, k, 1) is blind search, we _ee that the total work exceeds bliud seacch sttghtly

as the torch =_ppro_che_in£nity [and the _mount of excessis due to revisingthe editing

searchspace,whichIsnotneceuarywhen k = oo,sincetherewillbeno changeatany level

> I).The vadueofT as/¢-, o¢correspondstoan infinitesimalamountofwork at_bttract

levels, so it maJces sense th&t it correspond., ¢o pure blind search.
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Figure5.2:The optimalvalueofk increaseswith searchdepth.

Although T' doesnos yieldtoanalysis,we can usenumericalmethods tofredtheopsixnal.

_lue of k forany givenproblem situation.In l'act,becauseofthe steepnessof the curve,

numerical reel:hods converge quickly on. the approximate minimum.

6.4 The optimal amount of abstraction at different depths

Given the an_lytisofthe previoussection,we c_n compute the op$imalv_lueof k,hence

_he optimalamount ofabstraction,for_y 8ivenproblem eJtu_tion.For instaace,we can

examine the.behaviorofthe optimum msthe depth ofthe searchincreases.

Figure 5.2 shows thisforone specific(but repreHntLtive)case.Here we assume that

we have searchedto depth d at the most specificlevelof _bttr_ction(levelI}. We also

aasume tha_ to extend the search a steps, we first search _ steps at level _,, then

steps at level. - l, _ing the goals inherited from level n, then so forth tmtU we search

steps at level 1, usin_ the 8oals l_herited from level 2. The two lines on the graph _re she

optimum fordoublingthe searchdepth versusextendingita sma_/constantamount (inthis

ca_e3 steps).Note thas inboth cases,asthe se_ch depth increases,the optimal v_ue of

/_increases,which meaa$ tht_the optimal_mount of|tbstractlondecreases.
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Because we are using numerical methods to find the optima_ _lue of k, this trend can

only be exp_ned qualitatively. Recall that the most abstract search is ua¢oas'cralned by

any goals. So as the search deepens, the cost of taking more steps at the most _bstract level

increases. At the same time, the lower searches are becoming more and more consxz_ined

by the goals from the more abstract plans. After a point, the incremental constraint of

adding another goal is outweighed by the cost at the most abstract level of extea_ng the

search, so the optimum shifts in the direction of less abstra¢_ search. ,

5.5 Summary

Starting whh a reasonable set of a_sumptions, we have shown _he following:

• When the environment is changing, mor.e_ab_ leads to a more stable plan.

• For any given problem situation, we can determine through numerical me_hods the

optimal ratio of work betw_n adjacent levels of abstraction.

• As the depth of the plan increases, _he optimal amount of abstraction decreases: as

the cost of extending the abstract plan outwe_s the added benefit of the additional

goals.

..... "" II II II II
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Empirical results

To further validate the method beyond the analysis presented in Chapter _, we tested

it empirically by applying it to a speei_c domain. The results were produced using a

simulation of the plannLug system. The implemented system runs on smaller examples, but

the simulation was necessary to generate the wider range of empirieai data chat we needed.

We investigated the overall performance of _.he method _o see whether _ had the desired

behavior of graceful degradation under resource constraluts. In additio:_, we repeated a

pax of the analysis to see _he_her its predictions would hold for a real problem domain,

6.1 The domain

We chose to apply our method to the domain of an ot_ce robot shuttling papers around

for grant proposal preparation. Within the domain of _ant.proposal preparation, there are

_perators to carry documeats in various stage_ of preparatior_ to other people and places for

them to be further processed. The abstract operators are more covcerned with rhe stazus

of the grant as a whole and keg with the robot's postt_on relative to the paperwork.

The search _paee of the spe.¢|flc operators is shown in Fisure 6.1. Since the arcs between

the states are of varying; kngth, the actual search tree :foUowed b_, the planner may visit a

single state several different tithes. The actual search space with _he added dtznens_on of

t/me is thus unUm/ted in size, even _hough the number of states (independen_ of time) is

6_
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Figure 6.1: The space of s_ate_ possibly visited in the stint-proposal domain. Each state is

a triple of robot loc_._ton (R), grant location (G), and grant st_.tu, (5]. The arc_ represen$
the possible _mnsJ.tions between scares.

/
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limited.

The experiments we performed fa_l under the following two categories:

l. Overall performance. We explored the behavior of the method under vaLving resources

and search strategies. The aim here wgs to see whether the method would actually

exhibit the desired behavior of grac.efu] degradation under time stress.

2. Finding optimal strate_es. We st:trained how much search work was actually required

to expand the plan to various depths _.nder different search strategies. The aim here

wa.s to see whether the _r, al_ical resul',s about optimal search strategies could be

replicated in an actual problem domain.

All of the experiments are the resuh of applying_he planning method with two levels of

abstraction to a problem that requires a search depth of 16 steps at the specific level, aaci

a search depth of 8 steps at the abstract level.

6.2 Overall performance

The first category of experiments measures how performance is a_ected by varying the

resources available to the plarmer. We measured the quality of the evolving pla,n during

plan co_truction, where quality represents the percent_e of the goal_ actually achieved

i£ _he s_eps in the plan were aczuaUy executed (see 3.2.1 for the predse defin/tion). We

measured this over a. number of search strate_es.

Earl _.searcA strategy requires a dit_:eren_ amount of search to ful]v expand the plan. 5o

combining the results from multiple search strategies ca_ be tone either bv just using the

absolute search size of the searches for each strategy, or by normalizing the searches to be

a percentage of the _e_rch required to fully expand the plan. We present re.auhs from both

of those possibilities.

First, consider the absolute search effort expended, In Figure 6.2 that the quallty of the

plan rises as the a.mount of search work increases. This particular result is swa_aped by the

worst search strategi.es, bo_vever, The worst se_ch strategies will require the most search
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FJg_e _.2: The quality of :h_ plan in relation to the search eiYor_ expended. The data m'e
averaged to de_ermJne each graphed point.

ei_'o_, so the data points contributing to the graph at the uppe_ end of the sea_tch effort

scale are _Imo_ solely f:om the worst sea_'ch st_ ateg_es.

To h_.$pe¢_ more closely how _he curve behav_ in the m'eu affected b,v a/l search etrate-

gies, we restrict o_r foc_ to _he lower end of the search-e_ort spectrum. See Figure 6.3

for :he results within that range. Although there is more %_riat[o_, we still get _he kin4 of

inc:ement_J improvemen_ we are looking for.

I_ow _onsider the ca._e where we normali_e the results so that the torsi search work te

exp_d _he plan f_lJy i_ the _ame for every se_.rch strategy. See Figure 6.4 for the graph of

thee resets. The result,ing curve again shows the desked beha,vior.

Note in all the curves that,, _ we might expect, we gain a f_ir amount of improvement

e_rb', but require much more effort to improve the plan _ _ near-optimal level. This

supports the idea _hat with limited reso_trce_, we can s_ill generate u_eful, albeit potentially

suboptima_ plans.

To see what improvement abstraction o_ers, we corupare the amount of search work

done with the optim_s] abstraction st.race_v versus se_ch solely at the base level. In Figure

6._ we see that the time to reich am opsima] pl_ with abstraction i_ _ignif_canclv shorter
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Figure6.3:The quali_yoft.he.pl_ inrelationto the sesrckeffortexpended, restrictedto

the lowerend ofthe sea.rcb.-ef_ortspectrum.

Figure6.4: The qttslityof the plan in relstionto the searche_brt expended, when the

searchspaces_re no_malized,'tcrosssearchstrategies.
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Figure 6.5: The qualhy of the plan in re._.t|on to the search effort expended, with abstraction

a_d wi_ho%t. The _bs¢rsc_ plan reaches the optimum near the left edge of t]_e graph.

_hs= search without abstraction.

Since the graph ie not overly informati_'e about the sbs_rac* starch, we further i_spec¢

the relation between abstr_tion and base-level search by concenerating on the _¢'_Jon of

the search whexe both abs_raczJon and base-level search are present. See Figure 6.6 _or that

portion of the graph. We see. that search with abstraction is sign/fi_ntly better for the

same amount of search than search without abstraction.'

In automat.v, the empirical res_hs s_pport the basic underpinaings of _he w©_k: pro-

duc_ng p].sns with Sr_ceful degra_iatlon under time stress, and producing the plans more

_icMndy than with o_ly brae-level planning.

6.3 Finding optimal strategies

N_% we explore _he repe_t_.bilJty of the sns/ytical results on flndin_ optimal strste_es. For

t_s experiment, we v_r|ed the search depth a_td _,he search st_at*gJ ,es to see which _rate_ies

were brat for e_ch search depth,

Kec_] from the analytlca] results Jn Chapter _ that a =earch strategy is changed by
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Figure 6.6: The quality of the plan in relation to the search effort expended, with abstrsctiort
and without, restricted to lower amounts of search effort.

varying the ratio of the work done.a_ successive lev_.ls of abstraction. 5o a ratio of 2 reflects

that the search depth at the less abstract level is twice the search dept]t at the more abstract

level. This is in terms of the _umber of steps, since we expect the more abstract search to

extend further in tlme than tl_e less abstract search.

In the actual problem domain, the abstract search reached tts goal in 8 steps. Because

ofthat,a searchdepth of $ and a ratioof I would reach _he abstractgoal. Any deeper

sear¢Itwould falloutsideofthe analyticalmodel,so we restrictedour experimentto se_ch

depths of Less than 8. Search depths of 0-4 were basically fla_, because the states wi_kin

tha.trange areunafec_ed by the abstractgoals.We Lndude searchdepth 4 toreflectthose

depths, but we foct_, on search depths of 5-8 at the base level.

Figare 6.7 shows results similax to those from a purely analytical setttng..Note that

in this cMe, the Iln_tlng value of the search work u the ratio increases past the optimal

is higher thin the amount of search work required with a search ratio of 1. This d£@ers

from _b_: original analytical results because the abstract search space in the experimental

domain has a lower br_n¢l_g f_ctor than the specific level. In the analytic model, the.

branching factor is the same across levels, s_ _he work required when the ratio is 1. where
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i

Figure 6.7: A plot of total search work required versus the search ratio of base-level steps
to abstract steps, for search depths 4-8.

the majority of the work is due to the abstract level, is equivalent to the work required as

the ratio approaches co, where the search is entire|y at the base level. Note also in the figure

that the work required levels off rasher than asymptotically approaching the ]_mlt. This is

because for these particular problem descriptions, the 8bstract level performs no work after

the point where the curve levels off (a point which is only asymptotically approached in the

analytical model).

One feature of the state space explored by the planner is that there is a great deal

of duplication: the san_e state appears in multiple positions in the search tree• We have

d_scusmedhow the states are augmented with temporal information, so there are more states

possible than the set shown in Figure 6.1. However, even with the additional _empora!

information, there are m_tiple equivalent states within the search tree.

The implemented syrtem does not look for repeated states, since that is a potentially

¢orap_%ationally complex operation. But to see whether elJminstlng repeated states would

ma._e a lttni_can_ ditference for finding optimal search str_te$ies, we eliminated repeated

states from the exp_imental r_uhs. The results of that are _w_ in Figure 6.8. The opti-

mal _arch strateF_ies are shifte_ somewhat from the original ca0e, but overal_ _he influence
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Figure 6.8: A plot of total search work required versus the sea_ch ratio of bus-level steps
to abstract steps, for seaxch d.epths 4-8. Duplicate states are _mina_ed.

of the search strategies is quite dn_lar.

A further test we ¢Ln perform is to resenerste the analytical, data for the particular

problem we axe udn 8 for the experiments. Althou_ the analytical model is somewhat

simplified, so that some parameters of the mode] aren't easily characterized for a particular

problem (Such a_ the probability of a goal affecting a state), we modeled the domain as

accurately as possible. The results of regenerating the analysis for ,zxious depths are shown

in Figure 6.9.

A few ditfetences appear between the analytical da.ta and the empirical d_.ta. First and

most obvlol2s is the smoothness of the analytical data. This is because the _nalysis does not

model the discrete nat_l'e of the planning search--for instance, there is no way to expand

the search 0.3 steps. For the pu_pose_ of comparison, we can discretize the analytical data.

Doin_ that produces the graph shown in Figure 6.10. The graplh now looks more similar to

the emp_fic_ results, but still some difference_ remain.

The optimal _due for the search ratio is s bit dift'eren_ in the analytical model, rangine

from 1.52 at a depth of 4 to 1.68 at a depth of 8. This compares to an optimal ratio of 1.7-

2._} for the &ctaal domain. The discrepancy is due ¢o the difference_ in the _tu¢! domain
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Pisure 6.9: The resulss of the a_alytical model applied to the experimental problem for
search dept]_s4-8.

Dom_nTotalHo=k[Discrete,3.2,2.8,0,0.1,5,k,2],{k.l,9}
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Figu_ 6.10: The resulc$ of _ecredz_g _he an_ydc_ model for the exp_iment_ prob_m.
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versus the model that we constructed for _he analysis, But it is impor_sn_ _o note that the

opzimsl se_¢h s_rateD, for the analysis is close enough to optimal for the empiric_ c_e to

make _he analytical model a useful approximation for the tea3 dom_n.

The other _fference is the behavior of $he analysis for large value_ of the search ratio.

Bec_u_ of the particular behavior of _he operators in the experimental problem. _he total

work required levels off a.*'ter _ certain depth. The analytical model doesn't accouDt for

such behavior, ao it continues to _ow slowly as the search ratio incre_es. _his is again

a minor diffeTence in qualitative terms, as i_ makes no difference in _he are_ where we are

interested.

These results shov_, tha_ the ana]ytic._ model provides a re_son_ble _pp_o_mation to

the da_a from an actual problem. The techniques described in Chapter 5, _pp_icable to the

analyticalmode].,may _husbe used _nactualproblems.



Chapter 7

Related work

This work has roots and relations spread oyez a wide range of the planning and re_or_zg

literature. In this chapter we w_U show how our ideas are similarand differen_ from other

work in plauning and other related area_. We wi_ organize our discussion around some of the

major themes that appear in the work: resource-bounded plar_ning, abstraction, temporal

ressoning, replanning, blackboard-based p_nning, and integrated execution and pl_m._ng.

Some of the dted works may f_ in more than one category, or only fit crudely u_thin one

of the boxes we have drawn; we will point out these as they appear. The _scussion is not

meant to be exhaustive, but rather to cover the major ideas in the fields.

%1 l_source-bounded planning

A growing body of work is devoted to the prob.lem of resource-bounded planning. There

are a few major themes within the field. One group of researchers finds an imperfect but

complete plan and then incrementalJy improves it. Another group incrementally adds steps

to • p•rtiaiJ_,.developed plan. Others fund a s_le plan using static information about the

problem and resouzce constraints. And finally some researchers abandon run-time planntng

altogether, opt}ng for a precornputed plan.

80

I
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7.1.1 Improving imperfect plans

One approach to Mc_'ementall.v building a plan is to build an approximate plan first, then

to improve it incrementally. The attractive aspect of this approach is that the system

always has a complete plan resc}dn 8 from _he scan s_ate to the goal, so the plan may be

improved up m_t|l execution time. The drawbacks of this approa_ are that building the

_rst a.pproximate plan may" take a significant amount of t_ne kself, and the qualhy of that

first plan may be arbitrary bad.

All of the approaches discussed here assume that planning occurs before run-time. The

major efl'ect of this is that there is no mechanism for lncorpors_in 8 new information into

an exietLug plan, and no way to repair a plan when it becomes outdated.

In addition, allof the approaches operate within a sir_le level of abstraction.

Progressive horizon planning

Rymon, Webber, sad Clarke [Ryraon et at, 19921 p_esent an alSofithm they cal_ progressive

horizon plan_ing. The bait idea is that a simple polynormal a_gorithm is used to produce

as complete a pla_ a.s poss}ble. Then the beginning of the plan Js explored exhaustively:

for each possible _dternative plan prefix, the simple algorithm is run _o add a more-or-less

complete plan from rite end of the prefix to tl_e goal. This complete plan is _hen ev_lu_te_

to compare the compe¢ing plan prefixes.

The rea_n that the plan prefixes are more ca_e_ully explored ts that the first few steps

are :he most important in s rea/-tir-,e, unpr_,_ctable domain, and the world may c_ange

and make later steps h_appllcable by the time they are reached anyway. The prefixes are

restricted _ a fixed size, which is I hi the described implementation. This s|ze, or any

fixed size, amy not be appropriate for aLlproblems or reso_ce ]_udta_ion_, and may lead to

horizon effects. Also, the inJtl_ plan may be a_b_tr_ily bad, so optimizing the first step or

first few _eps of an e_'bJtrarLly bad plan may not get .you very far.

The re.on _hat complete plans are ev_lustedis to provide some slobs3 perspective on

the evaluation. Bu_ again, the ¢omplet_ons of the plan prefixes rosy have no relation _o
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the best possible plan completion, so evaluating the results of the quick and dirty plan

completion algorithm may have :_o relation to the actual worth of the plan p're_.

Boddy and Dean

Boddy and Dean [Boddy and De_n, 1989! present a continuation of their work on ar_ime

algorithms [Dean and Boddy, 1988], focusing here on ways to build a_d improve plans in an

anytime fashion. Their paper _ctually falls within both the realm of improving imperfect

plans and extending incomplete plans.

Their basic idea is to construct an incremental planner, speci_cally _ path planner,

by combining an incremental best-first search with sn incremental edge-swapping route-

improvement a_orit]un. Within _heir limited domain, they found that combining the _wo

incremental _echniques provided more benefit than either one in isolation. To reach this'

conclusion, they make the assumptior_ _hat all steps of the plan are of equal cost, so. she

result is of questionable genera_ty.

If one considers _he operations of e.ddlng a step to the plan and swapping two edges of

the plan to be the basic plan modification operations, then _he algorithm becomes a best.

first search through the spw:e of plan modt_catJons, which is a standard planning tech_que,

in this ca_e ex]_ibitir_$ strict anytime behavior.

R_ction-tirst search

The work on reaction-first search [Drummond et al., 1993] fails bes_ under the heading of

improving incomplete plans, although it is actually restricting a search space by incremen-

tally extending a simulation of a rea_:tive system. The approach assumes'an underlying

reactSve system that is simple enough to simulate. A planning system on the side is al_owed

a certain amount of time _.o suggest plan cons¢raints _o the rea_or to help i_ improve its

plan.

The planning system is told that the reactor's job will be to achieve a goal or set

of goals. The pla.,_ng system then simulates the reactor's program fahhfuUy: including

any probabilistic choice poin¢_. When it _nds a dead end, it backs _a_ information our

I_ |1 I
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and revises its plan to eliminate the dea_ end from consideration. The evolving plan is

guaranteed to improve monotonically, since at worst t]he planner is simulatin 8 the best plan

known, and at best is improving it. So the expected value of the pla_ improves monotonically

over t/me. When the deadline for action arrives, the planner sends the reactor the revisions

to its orig/nal plan in the form of advice not $o take certain branches of the plan, namely

the ones that are guaranteed to lea_ to dead ends.

For a complex domain, the assumption that the reactor's search space can be effectively

explored is at best _ questionable one. Since the plan only improves when dead ends are

reached, then _hese de_ ends must actuaUy be fore, d, which ma_v take a large amount of

search. In _ldition, a domain with reversible actions will completely defeat the method.

7.1.2 Extending incomplete plans

The planning method described in this thesis redes on incrementally extending the plan _t

multiple levebs of abstraction. A few other researchers have also a_opted the approach of

extending _n incomplete plan. By building a plan incrementally in this wsv, the planner

always ha_ an executable plan prefix that it can use when deadlines arr|ve.

For this approach to be useful, _he planulng mus_ be done left _o righ_ so tha_ there is a

usable plan prefix, Also, the quality of the plan prefix depends on the search control. With

good search control, the plan prefix will closely' approximate the optimal plan. With search

control of lower qualit}; the plan prefix may diverge arbitrar/ly far from the optimal plan.

Real-time A*

Korf [Kor_, 1990] describes a heuristic search technkjue for lncrementa_y extending a sea_ch

in best-first fuhion. This is a weak-method search, in that it ca_ be used anywhere a

standard search _chnique is used. It relies complete/)' on its search control, since it, operates

at a single level of _bstrac_io_. I_ also uses the clas_ical notion of static and _screte states

and operators, so it is of limited use in dynamic domains. The basic technique is useful as

a buts for other _gorithms, however.
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Bratman, Israel, and Pollack

Br_tman, Israel, and _Pollac.k [Bratman eta/., 19881 o_er a general &iscussion of the is-

sues involved with combinin$ menus-ends reasonizg, deliberation among alternatives, and

resource-bounded reasoning. The architecture she)' present is genera], and vague on details,

but :he general idea is that unsatisfied "intentions" are the important aspects of the plan

(as opposed to "desires"). Mesas-ends reasoning is used to build plans for those intentions.

Other gaps in the plans are filled in with means-ends reasoning as resources allow. The

deliberation mechanism is left undescribed.

The m_j0r drawback _'ith this approach is that by ¢ormmtl:ing to build plans for the

in_en_io,_s, the planner is required to do a potentially large amount of work before the

resource-dependent improvements are m|Lde.

Durfee and Lesser

Durfee and Le_er [Durfee and Lesser, 1986] present _ blackboard.based approach _hat uses

multiple levels of abstraction. Vv'itkin the domain of vehicle control, the system plots tr_k_

at high levels of _bstraction, which then provide intermediate goals to the lower levels of

abstraction.

The generalities sound similar to the work in tl_s thesis, but there are many dlferences.

FireL the plans at the higher levels of abstr_tion are completely expanded--only the lowest

level of abstraction is expanded increment_y. In contrast, our approach is uniform across

all levels of abstraction, so that the plans are expanded Incrementally at all levels. The sta_es

are annotated with times, but they a_e merely annotations about the expected position of

the vehicle Lt partic_d_ times, as with as air-_a_¢ control system. There i_ no general

treatment of time. The sta¢_-s and goalz _e considered to be "milestones" by the lower

]eveb, which _D' to to aclfieve them in sequence. We have argued that _his is unrealistic for

complex dom_ns.

__ !

il,J,_illllL' iU _Ull_ I ,JuIJ I1,1II11'
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Siluated control rules

Some of the basic underlying ideas of this thesi_ share some similar features with situated

control rules [Drummond, 1989]. The idea_ of situated control rules are relatively simple: A

plea is huik incrementally from tile current sta_e forward in time, _dlowing sets of parallel

opera_ors as we/l as individual operators. A best-first .search ls performed within this space

of operators and operator set% and this may be terminated at any time. In addition, new

i_onnation abou_ the env3ronment will move _he current state to a dli_erent point in the

search space, where the search will contLuue or restart.

The simplicity of the approach is also its weakness. There is no treatment of time in

skuated control rules, and the states are discrete and static. There also is no trea.tmen_ of

abstractions a_d how they affec_ the search.

7.1.3 Formally-based approaches

In th/s section we discuss approaches to resouTce-bounded plear_n8 that are concerned

mainly whh the problem of havi_g a clear mathemat.lca] formulation of _he plan_.ing problem

and solution. In doing that, they of necessity give up some of the power that more tnformal

solutions provide, tr',_ling tha_ off for mathematics/elegance aud _implicity. For example,

abs:raction is not an easily-formalized technique, so is rnissing from these approaches. Also,

a_though _emporat information hm been formalized by a number of researchers, temporally.

b_ed resource-bounded approaches have no_ yielded to much mathematical analysis.

The forma_ approaches can also suffer from the problem that rea] domains often do

not behave the way that formal models require. Re_ domains m_y not have context.

independent utilities, or at least not any :hat a;e easy to determine. They also just may

not fo]/ow any easily-de,ermined rules that would be necessary to carry out _he aaal._sis

required by th,: approaches.
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Decision theory

I_orvitz IHorvJtz, 1987] is the name moss closely associated with resource-bounded planrdng

using decision theory. His approach shows how one could fred the optimal planning step to

take given enough ut_ry measures. Although the approach is attractive in that it assures

an optima] solution given the resource constraints, i_ also requires utilities of an order that

are rarely ava_able, or _vou]_ require immense effort to catal_ even approximatel_:

Deny and Boddy's original work on anytime p]_mdng [Dean and Boddy, 1988! al_o

fails reasonably within the category of decis|on.theoreti¢ approaches, since it is designed

to produce a plan of increasing uti_tT over time. Again, it supers from the problem of

determining u_ty, and also _rom _he lack of complex algorithms that strictly satisfy the

definition. It puts a number of restrictive requtremea$s on the problem domains that are

not easUy realized in re_l domalns. For |nstance, actions must occur a_ exactly the expected

time.

Approximate planning

Ginsberg [Ginsberg, 1994] tac_es the problem of resource-bounded planning by building

an _approximate" plan. An approximate plan is a nonlinear plan that is approximately
i ,

c_rrect, in the sense tl_at any exceptions to _he plan--things that would make the plan

fad--are of measure 0 in the plan. For ins¢a_ce, ff there are an infinite numbe_ of possible

variable _signments, a plan wish a variable assigned is of me_ure 0 in the plan without an

assignment. Baaically, the idea is that there are i_dtely more ways for the plan to succeed

than to fail, so the probabiLity of the plan failing is O.

One obviou_ problem with this approach is that it needs an infinite domain. A finite

domain will have no plans of measure O. There i_ no distinction bet_,een lo_' and high

probability ex¢¢ption_ in s finite domair_, so a complete plan would have to be built for nil

f_te domains.

Even for i_flnite domains, t_s approach stiU requires a f_xed araount of time no matter

wha_ the resource bouads, _o there is no adaptation to vario_ts resource _dlo¢&tions.

[ __
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7.1.4 Reactive plannin s

An extreme approach to resource-bounded planning is to precompute the optimal action for

all possible situations. In that cue "planning" is reduced to matchi_$ the current situation,

via a table lookup or discrimination net, to the sec of precompate_l _ituation-action pairs,

and _hen performing the associated action.

The prototype of tMs approach i_ the universal plans approach [Schoppers, 1987]. A

universal plan is _ven s goLi or set of goals, and it uses a simple ba_:kward-chatning planner

to find all the possible states that cmn reach the goal via a sequence of actions. For each such

state and action sequence, the first action of that sequence |s associated with the _Jtuation,

and the process continue3.

The obvious advantage of this approach is speed, since it reduces _he planning problem

to a simple match problem. Given a complex problem, the number of situations may ma_:e

the match process nontrivtal, but it is stR1 potentially much faster than planning de novo.

Another advantage of the approach Is 'chat replanning is hnmedist.e and. inte_ated into

the approach. Lu fact, that is one of _he imtial _ea_ons for the zise of _his app_oa_. Since

all the situations are precomputed, then the planner never a_sumes that it is in the state

th_,t 8 classicalplannerwould have predictedittoend up in.]n_tea_i, each new situationis

matched a4_alnst its situation-action set, and the appropriate a_:tion is executed. This way

another agent rosy sheet the world, and _he planner _ be able to ta_e the appropriate

action for the changed situation with no extra effort.

The obvious disad_nta4_e of this approac_a is space. A complex domai_ may require an

immense, if not infinite, amount of space to capture the entire po,ible search 1pace. See

[Ginsberg, J.989] for a t_-depth discussion of _he problems inherent in the approach.

if a less extreme position is taken, where only some of the plnn is precomputed, then

the question that arises is what _.appens when _ situ_tion is re_chec] for which no action

ha_ been precomputed. This reverts to the problem of pl_uning, and by itself the _e_ctive

planning approach has no _vice to offerwhen planningis requiredat run time. Our

approach takes the opposite approach--since we acknowledge that some planning must be
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done at run time, we are tr}dLugto figure out how to solve that part of the problem. If you

ca_ run even 9{}_ of ti_e _£rne, but don't know how to walk, the remaining 10_ o_the time

you _ be stuck. If you know how to walk 100Y_of the time, you may be slower 90_ of

the time, but you won't get stuck.

Mulder and Braspenning [biulder and Braspenning, 1992] o_er a compromise from the

st:itt reactive approach by building a planner that puts together pieces of reactive plans

into a larger plan. The problem here is that the initi_d reactive plans are built only' by

carefully anedyzing the domain to choose appropriate partial plans for the problem at hand.

Again, the appropfia'_ereactive plans must be on hand in order for the plannei to be able

¢o compose them int_ e. larger plan.

7.2 Abstraction

Abstractionisusedinour approachbothtoprovidegloba_searchcontrolfortheplanning

processand toconstructa frazneworka_'oundwhichreplaunJngcan operate.Neitherof

thesenotionsisparticularlyrevolutionary,althou_ allowingpartialabstractplansisnot

common intheabstractionllT.eramre.

7.2.1 Early uses of abstraction

Abstractioninplanningdatesbackto PlanningG1_s'_Newel]and Simon,1972].In that

system,a logictheoJ:emwas transformedintoa more abstractformu2ation,whereitwas

_hensolved_and theabstrac_solutionwas usedtoguidethelower-levelsolu$1on.

ABSTRIFS [Sacerdot|,19741was thefirstgenarM-purposeabstraction-basedplanner.

Using abstractions _en_a_ed end-automatically based on critita/ity ratings, ABsl'a_s

generated a plan for the most abstract level, then tried to fill in the missin 8 steps at the

next more specific level, and so forth. The language &t each level |_ the same, except that

preconditions below the criticality rat|ng for 1:hat abstraction let'el are dropped. F,ach level

of abstraction was planned completely before the next level.

II I [
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NoAH [Sacerdoti, 1977', and its derivatives take a different view of abstraction that is

more like procedure calling. An "abstract" operator is merely a placeholder for a sequence

of lower-level goals, where the lower-leve| goals are de_ued ahead of time. I_ NOAH, :his

e_ausion rote lowe_-level 8eels was hidde_ h_ Lisp code, but in more recent planners of this

sort like $IP_ [Vv'_ns, 1988], the expansion is declarative and represented as part of the

abstract operator. Theoretically there could be muttip]e expansions of an abstract operator,

but the planners of this sort either could not backtrack over opera_or expansions or a_ bes_.

discouraged this. since the search space of operator expansions is orders of magnitude larger

than the base-level search space [Chris_ensen, 1989].

7.2.2 Alpine

Eaoblock formalized the A ssraxes approach in ALPINE [Enoblock, 1991], He also analyzed

the efl_ects of absorption and _howed that under a particular se_ of assumptions abstraction

could reduce the overall efl'or_ of a planner from exponential to linear.

Unfortunately, the assumptions do not hold up wen in real domain. The mahl assump-

tion, the downwa_ _o|ution proper_, usm:aes _hat any refinement of an abstraction w_l

lead the lower-|evel search to a goal Also, the intermediate goals generated by the abstract

search can be solved independently in the order generated. We have a_ued _n Chapter

3 that tlus ]at_er characteristic _ unrealistic, and we have performed ana_y_es with a set

of auumptions more appropriate for the domain characteristics we _hink are found in real

domaJ.us.

7.2.$ Spatula

We have briefly mentioned Unruh's system $_'^TULA in Chapset 3. It is a planner built in

the $OA_, problem.solving architecture for dynamically formuia_ing and using abstraction_

while planning. The basic idea is t_at when the planner is faced with a choice among

operators, it will abstr_t the space dynamically and continue building its ptan in the

abstract spa_. This process contirues dynamically until an opt,rater become_ preferre_

over the other possibilities. Th_ information learned from the abstr_t search is then u_ed



90 CHAPTER 7. RELATED WORK

as search contro] at "the executable level. Where the search control is la_ing, the pla.uner

will again far.e a choice and dynamic_y abstract to choose _._ operator.

Although _nruh's a.pproach is not designed for resource-bounded planning, the dynan_c

abstraction does provide a model for a possible aher_.ative approach to resource-bounded

planning with abstr_tion. I_stebd of working top-down from the abstract space to the ex-

ecutable level, the pla_ner could work at _he executable level, _bs_rscting only as necessa_

to choose operators at the executkble level. The drawbacks of'chat approach a_e that since

the abstraction i_ built and destroyed dynamically, i_. does not remain _ a framework for

extending the pl_ or replanning.

7.3 Temporal reasoning

Although the focus of _hi_ thesis is not on temporal reasoning, it draws heavily on idea_

from previous work in the field. The basis of our representation is temporal intervals, and

our s_ates _re se_s of these mte_vnls reflecting the current state of knowledge within the

plam_ing system.

_uch of the work on temporal reasoning.ha_ been on the logica/foundations underlying

the represent&tion [McDermott, 1982; Alien, 1983; 5hoham, 1989]. We have chosen _ more

applied approach, incorporating idea_ from these formL1 models as appropriate to realize

our conceptions of how time can be used in a resource-bounded system.

Allen's cl_sic work on temporal intervals [Allen, 19831 descrlbes how time relations

can be represented and re_oned about, ud [Allen and Koomen, lg$3] describes how this

representation could be used for building pla_s. As with other t.emporal-rea_oning systems,

howover, there is no idea of real-time reasoning using this temporal information. The work

in [A]Jen, 19_3] describes _ w_,y of clustering intervals into hierarchies that could make _he

reasoning more ef_clent, but _his was jus_ one step in the rlght dlrec_ion.

Dean's thesis on _ime map_ [Dean, 1985] resembles closely _he type of representation

our method h_ L_rown to become. In f_ct, Dean briefly acknowledges the efficiency and

repre_ntatJOnS] probler_s of hypotheficsl worlds when using a represents¢ion of this sort to
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perform pIannJn 8. The plannin 8 system actually described in his thesis main_al_ a sing]e

world state, however, and is not concerned with resource bounds. Also, abstraction and

replanning are not addressed in that work.

Devise_ [Vere, 1981] was one of the early planning systems to use time in a system de-

signed for real problems. The system basicaUy added ternporalinformation _o a l_'o^l_-s_yle

planner. Using the added temporal information, the planner could augment the standard

constraints of operator precedence found in NoA_ _ti_ more sophisticated temporal in-

formation. De_lser had no handling of abstraction, nor did it concern itsel_ with resource

bosh&. It was more suited to scheduling tasks before _ecution time, so l'_was not designed

to han_le run-_ime problems that required replanning or resource-bounded reasoning.

More recently, Penber_hy [Penberthy, 1993] has formulated what amounts to a formal.

ization of Deviser. Building on recen_ formalization_ of NOAlt-style plauners, Peuberthy

adds temporal information to the formaJ model in much the same way that Vere added

temporal information to ._OAH. As such, it provides an interesting formal model, but as an

implemented system, it has little to s_' abou¢ the problem of resource-bounded pla_ming,

since it and its underlying formal planner are built for formal cleanliness and sui_er along

the lines of efficiency. In addition, el! the planning is at one level, and replanning is not

supported.

T.4 Replauning

A fvndamental aspect of our method is that jt is designed to operate in e dynamic environ.

ment, where the world may change in unexpected ways, and actions may not always have

their expected effects. We consider the plan to be a constantly-evolving s_ructure tlqat i-_

modified no_ only by the planner but also by the outside world and potentially by other

ree_oaing modules withia _he planning agent. $o the planner must always be p_epared to

respond to ehauges whenever and wherever they occur withta _he plan.

Other researchers have _ecog_3zed _he need for repla_nin_. Most have considered replan.

aing to be a separate operation from planning: the plan Js built in isolation :_rom the world,
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and then it is handed to an execution module. The execution module _il/call the planner

when a part of the plan fails and needs replanning. This approach dates back to STalP$

[Fikes and Nilsson, 1971], where triangle tables were introduced for replamling. Triangle

tables have only limited replsnnJng power, since they are restricted to cha_ges that move

_thin the particular plan sequence already computed. A generaI_.zation of triangle tables,

teleo-reactive trees _Kilssou, 19941, falls more in the oa:egory of reactive plannir4_.

The _st we of abstraction 2o: replaunin8 is due _o Noah. NOA_ introduced the idea of

_ding the "wedge" of the plan s_ected by a world change, m_d replmmin8 just that wedge.

We follow a similar approach to _hat of NOAH for flndtng the highest level o_"abstraction

where the world change has an effect on the plan, ahhough as described in Chapter 3, our

approach only replans as mu_ of _he plan as required by the dependendes of the plan on

the particular bit of information that changes.

Pol]ack's work on IRMA [Pollack, 1992! is a. higher-level _,iew of the pla_ming and replan-

ning process. She i_ores the lower.level plan-construction process, apparently assuming

that plans to achieve individu_ $oals will be short enouth to be performed wi_Hn limited

resource bonds. This is despi_e criticism of traditional pisnners for not viewing the world

as a dynamic env_onment while b_ldtng and repairing pla_s (an opinion that we sba_e).

Ia_s instea_ focuses on controlling the overall plmu_ng process. In particular, the work

ad&esses the decision whether to plan for intentions. In 'other words, as new information

an_ves from the world, new inrention_ are formed. As opposed to our approa_:h, where the

planner _inds pa_;al plans to satisfy all of its _oals, I_A decides tc i_nore some of_ts goals

and plan completely for the re_t of them. This work also could be described as an inoremen-

tad planner, but wi_h its emphusis on incorporating d.wamic _ormation into the plmmtng

process, there aTe more slm]lmitks in spirit with our work in _he area of rep]annlng.

Mu]der _d Bradpen_ing's work was described, in Section 7.1.4. It also includes fac_ies

for monitoring and replannind. For each of a predeflned set of ¢lasse_ of time available:

mnoun_ of repl_nlng is associated with it. When a conflict is noticed ]_ its existing

pl_r_, the plan is replanned to the amount predefined. Since the entire approach _elies on

precomputation of the component reactive plans and the required amount of rep]anrdn_, it
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p_esents a sozne_,ha: inflexible approach to the problem.

The entire fl_d of case-based plannin 8 [Alderman, 1988; Hammond, 1988]' could be

considered related to replanning, since the emphasis is on fi'ctJng an exist_ug plan $o a new

situation. Case-based planning and reactive p]annhlg are closely related, althoug]_ it is

unclear tha_ either field would admit to the relation. Ca_e-based planning tries to 1lad an

existing plan in its library that most closely fits the current situation, and then modii_es

it tO be applicable _o the situation. The plans in the plan library are pre-stored. The

advantages of case-based ]_lan_ng over reactive planning are that plans can be stored as a

result of experience, and that a relatively sm'_ set of pre-stored plans can be modified to fit:

a wide range of =_tuations. The disa_iva_tages a_e that the ma_ch in case-based planning is

much more ¢omput=_'ctonaJly expe_ive (and relative|)' ill-defined), and the plan-modJ_¢at]ou

procedure is potentia_y expensive itself. (and again ill-defined). In case-based planning lit:le

thought is _ven to opemtln_ in a dynamic environment because of the computational cos_;

of _he planning process.

7.5 Blackboard-based planning

The work in this thesis derives many ol its basic ideas about |ncrementa_ planning and _he

comb_natio_ o_ goa3.driven and data, driven reasonin_ _rom the _]_¢kboard pro_lem-_olv_ng

frsmework.

Some early ideas abou_ blackboard-based plann]n_ appear in the work on OPM [Hayes-

B.O_;]_and Haves-l_oth, 1979]. OPM is an atten_pt to replicate human planning behavior,

in parti_ar opportunistic planning and replannin_. The work builds plans at multiple

levels of abstraction, and builds up plans incrementally, modifying them oppor_untstic_.v

as new information =,rr[ve_. _he work is a_ _us_tation of the application of b|ackboa=_l_

to plannin 8 to exhibit flexible behavior, a_d is not a general-purpose plktu_g framework

itself.

The work _n BB1 ¢x_ntrolplannin_ _=l-layes-Roth ef of.. 1986; _ohnson and H=_.ves-Koth,

1987; Garvey et of.: 1987] h= fogowed up on some of the idea; fro= the OPM world. The
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emphuis is on/texible and general use of control plans at the architectural level. As in

OPM, planning is incremental, with pla_ execution allowed to begin while the plan is being

elaborated. The approach relies on skeletal plan refinement, using a se_ of alternative

predefined ske'.e_al pla_s.

7.6 Integ_-ated execution and planning

A number of researchers have integrated planners into a robot control ar_itecture to achieve

multi-level planning for real-time problems [Lyons and Hendriks, 1992; Hanks and Firby,

1990; Gas, 1992; Myers and WJ]kias, 1994]. All of these azld _ planner :o an existing

reactive robot control _chitecture: Lyons and Hendriks build on the RS reactive model

[Lyons, 1990], Hanks and Firby as well as Gas build on :he RAP reactive model [Firby,

1989].,and Myers and Wllkinscombine the PItS system [Georgeffand Lansky,Ig87]with

:he $n_E planner[Wilklns,1958].In each case,the reactivecontrollerisclesignedtohandle

the real-time issues that arise. The planner is run concurrently with the reactive controller

to aid 1_ the robot control problem, but is not a real-rime program itself. Rather, the

results of the planner are used when they become available-assuming that the world has

no_ changed and invalidated the l_lan--to guide the reactive controller.

The reactive controller may use the planner in a v_iety ofw_ys: the planner may restrict

_he space of possible actions that the robot controller may" follow [Lyons and Hendriks,

1992]; the plan_er may g_nerate goal orderings for the robot controller [Gat, 1992]; or the

planner n_y generate _:tions to fill in shua_ions for which there are no reactions good

enough [Hanks and Firby, 1990; Myers and Wtlkins, 1994]; or the planner may replan when

conditions or subgoal$ fail _/vlyers and Wilk_ns, 1994]. Bu_ in all of these cases, the planner

itself is not sensitive to real-time issues, but rather works in isol&tion from the world and

with no representation of the temporal information available about the world. This leaves

the planner susceptible 1:othe same sort s of problem_ that motivated the work in thts _hesls.



Chapter 8

Discussion

In t_s thesis, we have presented a method for b_diag plans in a dynamic environment. Ia

this chapter we discuss directions that the work suggests for further e_xploration. We close

with a brief review of the work.

8.1 Issues

With a complex problem such asreal-timeplanninginthe realworld,we cannotexpec_one

ptece of work to _esolve all remaining questions. That is not the seneral nature of science,

no_ certainlyisi_of AL In this sectLonwe _scuss some olthe_ssues tha_ have a_isenfrom

the work and some direc*.ionss,hezeitcouldlead.

8.1.1 Incorporating pre-eomputed plans

In our initialdescriptionof the problem, we emph_ized thatthisapproach wu designed

to Rl/in the void where p_e-s_oredplanscould not cove;.This isnot to denigra¢epre-

scoredplans.Iftheplaunin$agent¢o_d retrievea satisfactoryplanfora situation.,_hout

resortingto plamdng, that would be preferable.Our argument isthatpre.storedplansby'

themselves are no: adequate for a real-world planning _gent.

One obviousextensionof the work would be _o_ncorporatepre-storedplanswhen they

_e av_htble,resortingto planningfrom scratchonly when we indeedreachthe frontiersof

95



96 CHAPTE:_ 8, DISCUSSIO.'_"

ourknowledge, A planningsystem thatcoulddraw on both pro-storedplansand synthesized

planswould potentiallybe abletospan a Spectrum ofdomains,from thosewhere the agen_

isendowed with a wealth ofexperienceto thosewhere the agent isla_kingin allbut the

most basicof information.

We wm sketcha basicoutlineofhow pro-computed planscouldbe inzegrateclinloour

plannerwithout a_ectingthe basicunderlyingplanningskills,Many ofthe detailswillno

doubt be more complicatedtorealizethan they are todescribeingeneral.

A pro-storedplanwillbe a sequenceofstat_s and actions,where the states and actions

are _he same as in the normal planningsearchspace.The only dii_ezenceisthat the work

ofsearchingthrough the searchspaceissaved.We willgeneralizethe ide_ a small amount

and add the abilityforthe sequence to be augmented with alternativebranches.L-tother

words, a pro-stored plan may be seen as a portion of a search space stored away for re-use.

Since we are working wither a temporal representation, the pre.stored plan will need

to be represented temporally as well. Since absolute times will be next to useless, the

pro-stored plans _ need to have times relative to some starting reference point. This

view of pro*stored plans make then_ sound like a very complex planning operator, which is

ess_ially hop."we consider them. In fact, one could store an entire pro-computed plan in a

single macro-operator. The problem with that is that the loner the ;qans get (and hence

the more search they win _ave), the less likely they are to have all their conditions satisfied

in a new situation.

We adopt _he approach of treating the plan as a set of operators that we are trying to

add into the plan. If w_. decide to add the conglomerated operator, we will add the initla_

operator into the plan i_ and when it is applicable. We then pick o_the remaining operators

and add _hem intotheplan aslongasthey areapplicable.Note tha_with our generalization

of brs.nchingphms, we may have some branchesthat willtransf_,rand some that willnot.

What we end up with ts a highly directed search deep into the search space. If the plan

transfers beneficially, we wRl find that the worth of the plan has increased dramatically.

A particularplacewhere pro-storedplanswould be usefulisinimplementing &batr_t

- - -- il I II • Ill ill I i



opera_ors. We would like to be a.ble, given enough information, to mimic the pseudo-

abstraction of I_oAs and its derivatives, where an abs_:r_¢t @erator is accompanied by the

prescripzion for how to expand it into more specific operators. In our _pproa_..h, we could

have pre-s$ored plans for a_ev'.:$ :he i,.termediate goals generated by the ab_rac_ plan.

The plaxxs,L_they proved _o be _ppllcableinthe currentplanningsi_ua1:ion(a/_erall,the

same intermediategoalmay appear inmore than one circumstance),would ineffectprovide

an implementationofthe_bstractgoals,whilenot robbingthebasicplanningmethod ofits

abilitytoexplorealternativesinthe casewhere the pre-storedplanisnot the bestpossibility

avail_ble.

The relaSedissueo_learningplanscouldalsorevolvearound theintermediategoals.As

in SOAr, where chunks are learned dependent on the particular resuhs returned from

subgoal, we propom learning plan fr_fb,ments as they a_hieve particular intermediate goals.

Since multiple intermediate, goeh may be affecting the plAn_rLg process: the plan learner

would need tounravelt]_eoperatordependenciesintochainsthatachieveeach of$he goals,

and store the relevant chai_ for use in other situations.

8.1.2 Generating abstractions automatically

Sincethepl_muJngme_hcd reliesheavilyon abswaction,itiscfitica]thattheplannerhave at

itsdisposal_ good abstract|onofzhe domain. The abstractionwRl determinetheframework

around which the pl_ i$ bmlt.

AutomaticMly generatin_ abstractions is a l_eld unto t_self, generatin_ theses for those

who have chosen to _tt_ck it [Christensen, 1991; KnobIo_, 1991; Unruh, 1993]. In general,

the problem requires a careful an&lysis of _he domain to identify _bstrac_ions that will be

useful, aJthough the work o_"[Unruh, 1993] provides a,n example of a dynamlr.,_lly.computed

abstraction b_ed ,.n the contex_ of the problem-solv|ng episode.

The context-dependentapproach fordynamicMly abstractingfrom a particularproblem-

solvingepisodeisparticularlyintriguing,but thai_ppro_ch works in_ bottom-up m_nnex,

which presentschallengesabout how _o use the approach fo_resource.bounc_edplanning

and replaunJng.



II

98 CHAPTER 8. DISCUSSIO.Y

8.1.8 Generating strategies automatically

The results of" the analy_ica_ snd empirical studies show that an optimal plan-expansion

strategy car, be found for a given problem. The analytical model serves as an approximation

to the actual domain, _d it lends itself to numerical methods to find the optimal strategy.

So far this technique exists only outside the a_tual planner.

Certainly the strategT could be chosen ahead of time by a_l.v_ng the domain and ush_g

the mathematical model to predict the best appro_, But a more interesting use of the

technique would have the planner automatically analyze the domain a,nd _djust the strate_"

to track the opt]maI strategy for the particular pa_t of the plan where the planner is _ that

moment.

8.1.4 Richer temporal representations

There is a tension between complete and e_clent representations in much of AI, no_ jus_ in

this work. We described our method in ter_s of a more soi:histicated temporal representa-

tion tha_ the one actuary csed _or _he h3_.plemen$_tion.

The ideal would be to have a l_nguage that could provide full expressive power but could

also cut corners and lose completeness under resource bounds. In other words, we would

like, some sort of "anytime _ representation _hat is sensitive to the amount of tim,_ avLilable

for its computations. The details of such an approack are unclear.

8.2 Conclusion

In this _heais, we have presented a p|anner that can build plans under resource bounds in

dynamic environments. In partic_lar, we have shown:

e The planner represents the dynamic and continuous s_ature o_informa_ion snd events

in the real world. The planner il built upon a foundation of a temporal representation,

which maint_dns information about :he world over time inter_'als.
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. The planner continually incorporates new informLtion into its model of the world

and adapts its plan accordingly. The planner views the plan as a dynamic data

stnzct_e chat is undergo_n 8 constant mod}fication, both from the planner itself m_d

from external forces, such as the world or other reasoning cor_ponents. The planner

maintains records of the _ependencies that parts of the plan have on world states.

As the states ch_uge, the plan is updated using the dependencies. In addition, new

branches may be added zo zhe pisn as _he states cha_ge.

e The planner operates within arbitrary and ¢han_!g time bounds, building the best

plan J.t can within the amount of time available. The pla_s are built incrementaJ]y

a_ m_tiple levels of abstraction. As deadlines approach, the planner will commh to

its best plan. Given more time, the planner will produce a better, more complete

pls.n before commit,:in8 to it. As the plans at the various levels of abstra_:tion are

elaborated, they provide an increasingly complete and accurate approxims.tion to a

full plan.

We have presented an tnalytical model ._ o_r pl_.nin8 method. L'sin$ the model, we

can fred the bene_s of abstraction, and we can find an optim.al strate&v for expanding the

plans at the various levels of abstraction. Our empirical results _alJdste the method _ud

the _nalysis.
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